Advertisement

Perspectives on Behavior Science

, Volume 42, Issue 2, pp 267–281 | Cite as

A Neuro-Operant Analysis of Mnemonic Recognition

  • Daniele OrtuEmail author
  • Traci M. Cihon
Article
  • 122 Downloads

Abstract

Historically, the fields of operant selection and recognition memory have not interacted substantially with one another. However, both deal with how behavioral repertoires change over time as a function of environmental stimulation. In this article, we propose neuro-operant interpretations of behavioral phenomena occurring in recognition memory procedures based on (a) the ability to discriminate changes in the strength of responses caused by environmental stimulation and (b) the occasioning of supplementary responses by current stimulation. A neuro-operant interpretation of mnemonic behavior may further the understanding of the phenomena in place and simplify the current taxonomy of learning and memory.

Keywords

Hippocampus Mnemonic behavior Operant selection Perirhinal cortex Priming Repertoire 

Notes

Funding

Daniele Ortu is funded by the Beatrice H. Barrett Research Endowment.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Aggleton, J. P., Vann, S. D., Denby, C., Dix, S., Mayes, A. R., Roberts, N., & Yonelinas, A. P. (2005). Sparing of the familiarity component of recognition memory in a patient with hippocampal pathology. Neuropsychologia, 43, 1810–1823.  https://doi.org/10.1016/j.neuropsychologia.2005.01.019.Google Scholar
  2. Baylis, G. C., & Rolls, E. T. (1987). Responses of neurons in the inferior temporal cortex in short term and serial recognition memory tasks. Experimental Brain Research, 65, 614–622.  https://doi.org/10.1007/BF00235984.Google Scholar
  3. Becher, T., & Trowler, P. (2001). Academic tribes and territories: intellectual enquiry and the culture of disciplines. Buckingham, England: McGraw-Hill Education.Google Scholar
  4. Benoit, S. C., & Davidson, T. L. (1996). Interoceptive sensory signals produced by 24-hr food deprivation, pharmacological glucoprivation, and lipoprivation. Behavioral Neuroscience, 110, 168–180.  https://doi.org/10.1037/0735-7044.110.1.168.Google Scholar
  5. Berridge, C. W., & Waterhouse, B. D. (2003). The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Research Reviews, 42, 33–84.  https://doi.org/10.1016/S0165-0173(03)00143-7.Google Scholar
  6. Bowles, B., Crupi, C., Mirsattari, S. M., Pigott, S. E., Parrent, A. G., Pruessner, J. C.,. .. Köhler, S. (2007). Impaired familiarity with preserved recollection after anterior temporal-lobe resection that spares the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 104, 16382–16387.  https://doi.org/10.1073/pnas.0705273104.Google Scholar
  7. Breiter, H. C., Etcoff, N. L., Whalen, P. J., Kennedy, W. A., Rauch, S. L., Buckner, R. L.,. .. Rosen, B. R. (1996). Response and habituation of the human amygdala during visual processing of facial expression. Neuron, 17, 875–887.  https://doi.org/10.1016/S0896-6273(00)80219-6.Google Scholar
  8. Bussey, T. J., & Saksida, L. M. (2007). Memory, perception, and the ventral visual-perirhinal-hippocampal stream: thinking outside of the boxes. Hippocampus, 17, 898–908.  https://doi.org/10.1002/hipo.20320.Google Scholar
  9. Buzsaki, G. (2006). Rhythms of the brain. New York, NY: Oxford University Press.Google Scholar
  10. Cansino, S., Maquet, P., Dolan, R. J., & Rugg, M. D. (2002). Brain activity underlying encoding and retrieval of source memory. Cerebral Cortex, 12, 1048–1056.  https://doi.org/10.1093/cercor/12.10.1048.Google Scholar
  11. Carlesimo, G. A., Lombardi, M. G., Caltagirone, C., & Barban, F. (2015). Recollection and familiarity in the human thalamus. Neuroscience & Biobehavioral Reviews, 54, 18–28.  https://doi.org/10.1016/j.neubiorev.2014.09.006.Google Scholar
  12. Donahoe, J. W. (1996). On the relation between behavior analysis and biology. The Behavior Analyst, 19, 71–73.Google Scholar
  13. Donahoe, J. W. (2017). Behavior analysis and neuroscience: complementary disciplines. Journal of the Experimental Analysis of Behavior, 107, 301–320.  https://doi.org/10.1002/jeab.251.Google Scholar
  14. Donahoe, J. W., Burgos, J. E., & Palmer, D. C. (1993). A selectionist approach to reinforcement. Journal of the Experimental Analysis of Behavior, 60, 17–40.  https://doi.org/10.1901/jeab.1993.60-17.Google Scholar
  15. Eichenbaum, H., Fortin, N. J., Ergorul, C., Wright, S. P., & Agster, K. L. (2005). Episodic recollection in animals: “If it walks like a duck and quacks like a duck . . .”. Learning and Motivation, 36, 190–207.  https://doi.org/10.1016/j.lmot.2005.02.006.Google Scholar
  16. Eichenbaum, H., Yonelinas, A. P., & Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annual Reviews of Neuroscience, 30, 123–152.  https://doi.org/10.1146/annurev.neuro.30.051606.094328.Google Scholar
  17. Ferster, C. B. (1953). The use of the free operant in the analysis of behavior. Psychological Bulletin, 50, 263–274.  https://doi.org/10.1037/h0055514.Google Scholar
  18. Ferster, C. B., & Skinner, B. F. (1957). Schedules of reinforcement. New York, NY: Appleton-Century-Crofts.Google Scholar
  19. Fischer, H., Wright, C. I., Whalen, P. J., McInerney, S. C., Shin, L. M., & Rauch, S. L. (2003). Brain habituation during repeated exposure to fearful and neutral faces: a functional MRI study. Brain Research Bulletin, 59, 387–392.  https://doi.org/10.1016/S0361-9230(02)00940-1.Google Scholar
  20. Fortin, N. J., Wright, S. P., & Eichenbaum, H. (2004). Recollection-like memory retrieval in rats is dependent on the hippocampus. Nature, 431, 188–191.  https://doi.org/10.1038/nature02853.Google Scholar
  21. Friedman, D. (1990). ERPs during continuous recognition memory for words. Biological Psychology, 30, 61–87.  https://doi.org/10.1016/0301-0511(90)90091-A.Google Scholar
  22. Fryling, M. J., & Hayes, L. J. (2010). An interbehavioral analysis of memory. European Journal of Behavior Analysis, 11, 53–68.  https://doi.org/10.1080/15021149.2010.11434334.Google Scholar
  23. Gimbel, S. I., Brewer, J. B., & Maril, A. (2017). I know I’ve seen you before: distinguishing recent-single-exposure-based familiarity from pre-existing familiarity. Brain Research, 1658, 11–24.  https://doi.org/10.1016/j.brainres.2017.01.007.Google Scholar
  24. Glenn, S. S., Ellis, J., & Greenspoon, J. (1992). On the revolutionary nature of the operant as a unit of behavioral selection. American Psychologist, 47, 1329–1336.  https://doi.org/10.1037/0003-066X.47.11.1329.Google Scholar
  25. Gonsalves, B. D., Kahani, I., Curran, T., Norman, K. A., & Wagner, A. D. (2005). Memory strength and repetition suppression: multimodal imaging of medial temporal cortical contributions to recognition. Neuron, 47, 751–761.  https://doi.org/10.1016/j.neuron.2005.07.013.Google Scholar
  26. Grill-Spector, K., & Malach, R. (2001). fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychologica, 107(1–3), 293–321.  https://doi.org/10.1016/S0001-6918(01)00019-1.Google Scholar
  27. Harris, J. D. (1943). Habituatory response decrement in the intact organism. Psychological Bulletin, 40, 385–422.  https://doi.org/10.1037/h0053918.Google Scholar
  28. Henson, R. N. A. (2003). Neuroimaging studies of priming. Progress in Neurobiology, 70, 53–81.  https://doi.org/10.1016/S0301-0082(03)00086-8.Google Scholar
  29. Henson, R. N. A., & Rugg, M. D. (2003). Neural response suppression, haemodynamic repetition effects, and behavioural priming. Neuropsychologia, 41, 263–270.  https://doi.org/10.1016/S0028-3932(02)00159-8.Google Scholar
  30. Horner, A. J., Bisby, J. A., Bush, D., Lin, W. J., & Burgess, N. (2015). Evidence for holistic episodic recollection via hippocampal pattern completion. Nature Communications, 6, 1–11.  https://doi.org/10.1038/ncomms8462.Google Scholar
  31. Horner, A. J., & Henson, R. N. (2008). Priming, response learning and repetition suppression. Neuropsychologia, 46, 1979–1991.  https://doi.org/10.1016/j.neuropsychologia.2008.01.018.Google Scholar
  32. Hull, D. L., Langman, R. E., & Glenn, S. S. (2001). A general account of selection: biology, immunology, and behavior. Behavioral and Brain Sciences, 24, 511–528.Google Scholar
  33. Kamin, L. J. (1969). Predictability, surprise, attention, and conditioning. In R. Church & B. Campbell (Eds.), Punishment and aversive behavior (pp. 279–296). New York, NY: Appleton-Century-Crofts.Google Scholar
  34. Kensinger, E. A. (2009). Remembering the details: effects of emotion. Emotion Review, 1, 99–113.  https://doi.org/10.1177/1754073908100432.Google Scholar
  35. Kesner, R. P., Lee, I., & Gilbert, P. (2004). A behavioral assessment of hippocampal function based on a subregional analysis. Reviews in the Neurosciences, 15, 333–352.  https://doi.org/10.1515/REVNEURO.2004.15.5.333.Google Scholar
  36. Lavenex, P., & Amaral, D. G. (2000). Hippocampal-neocortical interaction: a hierarchy of associativity. Hippocampus, 10, 420–430.  https://doi.org/10.1002/1098-1063(2000)10:4<420::AID-HIPO8>3.0.CO;2-5.Google Scholar
  37. Mandler, G. (1980). Recognizing: the judgment of previous occurrence. Psychological Review, 87, 252–271.  https://doi.org/10.1037/0033-295X.87.3.252.Google Scholar
  38. Michael, J., Palmer, D. C., & Sundberg, M. L. (2011). The multiple control of verbal behavior. The Analysis of Verbal Behavior, 27, 3–22.  https://doi.org/10.1007/BF03393089.Google Scholar
  39. Muñoz-López, M., Insausti, R., Mohedano-Moriano, A., Mishkin, M., & Saunders, R. C. (2015). Anatomical pathways for auditory memory II: information from rostral superior temporal gyrus to dorsolateral temporal pole and medial temporal cortex. Frontiers in Neuroscience, 9.  https://doi.org/10.3389/fnins.2015.00158.
  40. Murty, V. P., & Adcock, R. A. (2013). Enriched encoding: reward motivation organizes cortical networks for hippocampal detection of unexpected events. Cerebral Cortex, 24, 2160–2168.  https://doi.org/10.1093/cercor/bht063.Google Scholar
  41. Neely, J. (1991). Semantic priming effects in visual word recognition: a selective review of current findings and theories. In D. Besner & G. Humphreys (Eds.), Basic processes in reading: visual word recognition (pp. 264–336). Hillsdale, NJ: Erlbaum.Google Scholar
  42. Neuman, K. M., Molina-Campos, E., Musial, T. F., Price, A. L., Oh, K. J., Wolke, M. L., … Nicholson, D. A. (2015). Evidence for Alzheimer’s disease-linked synapse loss and compensation in mouse and human hippocampal CA1 pyramidal neurons. Brain Structure and Function, 220, 3143–3165.  https://doi.org/10.1007/s00429-014-0848-z.
  43. Ortu, D. (2012). Neuroscientific measures of covert behavior. The Behavior Analyst, 35, 75–87.  https://doi.org/10.1007/bf03392267.Google Scholar
  44. Ortu, D. (2015). How do we remember traumatic events? Exploring the role of neuromodulation. Behavioral and Brain Sciences, 38, e19.  https://doi.org/10.1017/S0140525X14000260.Google Scholar
  45. Ortu, D., & Vaidya, M. (2013). A neurobiology of learning beyond the declarative non-declarative distinction. Frontiers in Behavioral Neuroscience, 7.  https://doi.org/10.3389/fnbeh.2013.00161.
  46. Ortu, D., & Vaidya, M. (2017). The challenges of integrating behavioral and neural data: bridging and breaking boundaries across levels of analysis. The Behavior Analyst, 40, 209–224.  https://doi.org/10.1007/s40614-016-0074-5.Google Scholar
  47. Otmakhova, N., Duzel, E., Deutch, A. Y., & Lisman, J. (2013). The hippocampal-VTA loop: the role of novelty and motivation in controlling the entry of information into long-term memory. In G. Baldassarre & M. Mirolli (Eds.), Intrinsically motivated learning in natural and artificial systems (pp. 235–254). Berlin, Germany: Springer.Google Scholar
  48. Palmer, D. C. (1991). A behavioral interpretation of memory. In L. J. Hayes & P. N. Chase (Eds.), International Institute on Verbal Relations. Dialogues on verbal behavior: the first International Institute on Verbal Relations (pp. 261–279). Reno, NV: Context Press.Google Scholar
  49. Palmer, D. C. (2009a). Response strength and the concept of the repertoire. European Journal of Behavior Analysis, 10, 49–60.Google Scholar
  50. Palmer, D. C. (2009b). The role of private events in the interpretation of complex behavior. Behavior and Philosophy, 37, 3–19.Google Scholar
  51. Palmer, D. C. (2016). On intraverbal control and the definition of the intraverbal. The Analysis of Verbal Behavior, 32, 96–106.  https://doi.org/10.1007/s40616-016-0061-7.Google Scholar
  52. Palmer, D. C., & Donahoe, J. W. (1992). Essentialism and selectionism in cognitive science and behavior analysis. American Psychologist, 47, 1344–1358.  https://doi.org/10.1037/0003-066X.47.11.1344.Google Scholar
  53. Price, J. L., Ko, A. I., Wade, M. J., Tsou, S. K., McKeel, D. W., & Morris, J. C. (2001). Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Archives of Neurology, 58, 1395–1402.  https://doi.org/10.1001/archneur.58.9.1395.Google Scholar
  54. Rankin, C. H., Abrams, T., Barry, R. J., Bhatnagar, S., Clayton, D. F., Colombo, J., … McSweeney, F. K. (2009). Habituation revisited: an updated and revised description of the behavioral characteristics of habituation. Neurobiology of Learning and Memory, 92, 135–138.  https://doi.org/10.1016/j.nlm.2008.09.012.
  55. Redgrave, P., Prescott, T. J., & Gurney, K. (1999). The basal ganglia: a vertebrate solution to the selection problem? Neuroscience, 89, 1009–1023.  https://doi.org/10.1016/S0306-4522(98)00319-4.Google Scholar
  56. Ritzer, G. (1975). Sociology: a multiple paradigm science. The American Sociologist, 10, 156–167.Google Scholar
  57. Roediger, H. L., & McDermott, K. B. (1995). Creating false memories: remembering words not presented in lists. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 803–814.  https://doi.org/10.1037/0278-7393.21.4.803.Google Scholar
  58. Rudy, J. W., & O’Reilly, R. C. (1999). Contextual fear conditioning, conjunctive representations, pattern completion, and the hippocampus. Behavioral Neuroscience, 113, 867–880.  https://doi.org/10.1037/0735-7044.113.5.867.Google Scholar
  59. Scatton, B., Simon, H., Le Moal, M., & Bischoff, S. (1980). Origin of dopaminergic innervation of the rat hippocampal formation. Neuroscience Letters, 18, 125–131.  https://doi.org/10.1016/0304-3940(80)90314-6.Google Scholar
  60. Shepard, R. N. (1967). Recognition memory for words, sentences, and pictures. Journal of Verbal Learning and Verbal Behavior, 6, 156–163.Google Scholar
  61. Sidman, M. (1958). Some notes on “bursts” in free-operant avoidance experiments. Journal of the Experimental Analysis of Behavior, 1, 167–172.Google Scholar
  62. Sidman, M. (1994). Equivalence relations and behavior: a research story. Boston, MA: Authors Cooperative.Google Scholar
  63. Skinner, B. F. (1948). The William James lectures. Retrieved from bfskinner.org/wp-content/uploads/2014/02/William-James-Lectures.pdf
  64. Skinner, B. F. (1957). Verbal behavior. Acton, MA: Copley Publishing Group.Google Scholar
  65. Skinner, B. F. (1974). About behaviorism. New York, NY: Vintage.Google Scholar
  66. Skinner, B. F. (1977). Why I am not a cognitive psychologist. Behavior, 5, 1–10.Google Scholar
  67. Squire, L. R. (2004). Memory systems of the brain: a brief history and current perspective. Neurobiology of Learning and Memory, 82, 171–177.  https://doi.org/10.1016/j.nlm.2004.06.005.Google Scholar
  68. Squire, L. R., Wixted, J. T., & Clark, R. E. (2007). Recognition memory and the medial temporal lobe: a new perspective. Nature Reviews Neuroscience, 8, 872–883.  https://doi.org/10.1038/nrn2154.Google Scholar
  69. Staddon, J. E. (2016). Adaptive behavior and learning. Cambridge, England: Cambridge University Press.Google Scholar
  70. Thompson, R. F., & Spencer, W. A. (1966). Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychological Review, 73, 16–43.  https://doi.org/10.1037/h0022681.Google Scholar
  71. Wais, P. E., Wixted, J. T., Hopkins, R. O., & Squire, L. R. (2006). The hippocampus supports both the recollection and the familiarity components of recognition memory. Neuron, 49, 459–466.  https://doi.org/10.1016/j.neuron.2005.12.020.Google Scholar
  72. Wang, W. C., Ranganath, C., & Yonelinas, A. P. (2014). Activity reductions in perirhinal cortex predict conceptual priming and familiarity-based recognition. Neuropsychologia, 52, 19–26.  https://doi.org/10.1016/j.neuropsychologia.2013.10.006.Google Scholar
  73. Watkins, M. J. (1990). Mediationism and the obfuscation of memory. American Psychologist, 45, 328–335.  https://doi.org/10.1037/0003-066X.45.3.328.Google Scholar
  74. Wiggs, C. L., & Martin, A. (1998). Properties and mechanisms of perceptual priming. Current Opinion in Neurobiology, 8, 227–233.  https://doi.org/10.1016/S0959-4388(98)80144-X.Google Scholar
  75. Wixted, J. (2008). JEAB and the Skinnerian interpretation of behavior. Journal of the Experimental Analysis of Behavior, 89, 137–139.  https://doi.org/10.1901/jeab.2008.89-137.Google Scholar
  76. Wright, A. A. (2007). An experimental analysis of memory processing. Journal of the Experimental Analysis of Behavior, 88, 405–433.  https://doi.org/10.1901/jeab.2007.88-405.Google Scholar
  77. Xiang, J.-Z., & Brown, M. W. (1998). Differential neuronal encoding of novelty, familiarity and recency in regions of the anterior temporal lobe. Neuropharmacology, 37, 657–676.  https://doi.org/10.1016/S0028-3908(98)00030-6.Google Scholar
  78. Yonelinas, A. P. (2002). The nature of recollection and familiarity: a review of 30 years of research. Journal of Memory and Language, 46, 441–517.  https://doi.org/10.1006/jmla.2002.2864.Google Scholar
  79. Yovel, G., & Paller, K. A. (2004). The neural basis of the butcher-on-the-bus phenomenon: when a face seems familiar but is not remembered. NeuroImage, 21, 789–800.  https://doi.org/10.1016/j.neuroimage.2003.09.034.Google Scholar

Copyright information

© Association for Behavior Analysis International 2018

Authors and Affiliations

  1. 1.Neurobehavioral Laboratory, Department of Behavior AnalysisUniversity of North TexasDentonUSA

Personalised recommendations