Advertisement

Perspectives on Behavior Science

, Volume 41, Issue 1, pp 45–67 | Cite as

Abstraction, Multiple Exemplar Training and the Search for Derived Stimulus Relations in Animals

  • Mark Galizio
  • Katherine E. Bruce
Original Research

Abstract

Symmetry and other derived stimulus relations are readily demonstrated in humans in a variety of experimental preparations. Comparable emergent relations are more difficult to obtain in other animal species and seem to require certain specialized conditions of training and testing. This article examines some of these conditions with an emphasis on what animal research may be able to tell us about the nature and origins of derived stimulus relations. We focus on two areas that seem most promising: 1) research generated by Urcuioli’s (2008) theory of the conditions necessary to produce symmetry in pigeons, and 2) research that explores the effects of multiple exemplar training on emergent relations. Urcuioli’s theory has successfully predicted emergent relations in pigeons by taking into account their apparent difficulty in abstracting the nominal training stimulus from other stimulus properties such as location and temporal position. Further, whereas multiple exemplar training in non-humans has not consistently yielded arbitrarily-applicable relational responding, there is a growing body of literature showing that it does result in abstracted same-different responding. Our review suggests that although emergent stimulus relations demonstrated in non-humans at present have not yet shown the flexibility or generativity apparent in humans, the research strategies reviewed here provide techniques that may permit the analysis of the origins of derived relational responding.

Keywords

Symmetry Abstraction Stimulus equivalence Multiple exemplar training Emergent stimulus relations 

Notes

Acknowledgements

The authors thank Katherine Dyer, Madeleine Mason, Simone Nguyen, and Tiffany Phasukkan for their helpful comments on an earlier version of this manuscript.

Conflict of Interest

Both Mark Galizio and Katherine Bruce declare that they have no conflicts of interest related to the material in this manuscript.

Funding

The first author was supported by grant DA 29252 during the preparation of this manuscript.

References

  1. Baer, D. M., & Sherman, J. A. (1964). Reinforcement control of generalized imitation in young children. Journal of Experimental Child Psychology, 1(1), 37–49.CrossRefGoogle Scholar
  2. Baillargeon, R., & Carey, S. (2012). Core cognition and beyond: the acquisition of physical and numerical knowledge. In S. M. Pauen & S. M. Pauen (Eds.), Early childhood development and later outcome (pp. 33–65). New York, NY: Cambridge University Press.Google Scholar
  3. Barnes, C. S., & Rehfeldt, R. A. (2013). Advances in language interventions based on relational frame theory for individuals with developmental disorders. In S. Dymond & B. Roche (Eds.), Advances in relational frame theory: research and application (pp. 151–177). Oakland, CA: New Harbinger.Google Scholar
  4. Barnes-Holmes, Y., Barnes-Holmes, D., Smeets, P. M., Strand, P., & Friman, P. (2004). Testing and training relational responding in accordance with the relational frame of opposite in young children. International Journal of Psychology and Psychological Therapy, 4, 559–586.Google Scholar
  5. Baron, A., Perone, M., & Galizio, M. (1991a). Analyzing the reinforcement process at the human level:can application and behavioristic interpretation replace laboratory research? The Behavior Analyst, 14, 95–105.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Baron, A., Perone, M., & Galizio, M. (1991b). The experimental analysis of human behavior: indispensible, ancillary, or irrelevant. The Behavior Analyst, 14, 145–155.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Berens, N. M., & Hayes, S. C. (2007). Arbitrarily applicable comparative relations: experimental evidence for a relational operant. Journal of Applied Behavior Analysis, 40, 45–71.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bloom, P. (2010). How pleasure works: the new science of why we like what we like. New York, NY: Random House.Google Scholar
  9. Bodily, K. D., Katz, J. S., & Wright, A. A. (2008). Matching-to-sample abstract-concept learning by pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 34(1), 178–184.PubMedGoogle Scholar
  10. Brino, A. L., Campos, R. S., Galvão, O. F., & McIlvane, W. J. (2014b). Blank-comparison matching-to-sample reveals a false positive symmetry test in a capuchin monkey. Psychology & Neuroscience, 7, 193–198.CrossRefGoogle Scholar
  11. Brino, A. L., Galvão, O. F., Picanco, C. R. F., Barros, R. S., Souza, C. B. A., Goulart, B. R. K., & McIlvane, W. J. (2014a). Generalized identity matching after multiple exemplar-training in capuchin monkeys. Psychological Record, 64, 693–704.CrossRefPubMedGoogle Scholar
  12. Campos, H. C., Urcuioli, P. J., & Swisher, M. (2014). Concurrent identity training is not necessary for associative symmetry in successive matching. Journal of the Experimental Analysis of Behavior, 101, 10–25.CrossRefPubMedGoogle Scholar
  13. Carter, D. E., & Werner, T. J. (1978). Complex learning and information processing by pigeons: a critical analysis. Journal of the Experimental Analysis of Behavior, 29, 565–601.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Catania, A. C. (2013). Learning, 5th Ed. Cornwall on Hudson, NY: Sloan Publishing.Google Scholar
  15. Cook, R. G., Kelly, D. M., & Katz, J. S. (2003). Successive two-item same-different discrimination and concept learning by pigeons. Behavioural Processes, 62, 125–144.CrossRefPubMedGoogle Scholar
  16. Critchfield, T. S., & Fienup, D. M. (2010). Using stimulus equivalence technology to teach statistical inference in a group setting. Journal of Applied Behavior Analysis, 43, 763–768.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cumming, W., & Berryman, R. (1965). The complex discriminated operant: studies of matching-to-sample and related problems. In D. I. Mostovsky (Ed.), Stimulus generalization (pp. 284–330). Stanford, CA: Stanford University Press.Google Scholar
  18. Daniel, T. A., Goodman, A. M., Thompkins, A. M., Forloines, M. R., Lazarowski, L., & Katz, J. S. (2016). Generalization cannot predict abstract-concept learning. In M. C. Olmstead (Ed.), Animal cognition: principles, evolution and development (pp. 131–145). New York: Nova Science Publishers.Google Scholar
  19. Daniel, T. A., Wright, A. A., & Katz, J. S. (2015). Abstract-concept learning of difference in pigeons. Animal cognition, 18, 831–837.Google Scholar
  20. Deacon, T. W. (1998). The symbolic species: the co-evolution of language and the brain. New York, NY: WW Norton & Company.Google Scholar
  21. Dube, W. V., & McIlvane, W. J. (1996). Implications of stimulus control topography analysis for emergent behavior and stimulus classes. In T. R. Zentall & P. M. Smeets (Eds.), Advances in psychology: stimulus class formation in humans and animals (Vol. 117, pp. 197–220). Amsterdam: Elsevier.CrossRefGoogle Scholar
  22. Dube, W. V., McIlvane, W. J., Callahan, T. D., & Stoddard, L. T. (1993). The search for stimulus equivalence in nonverbal organisms. The Psychological Record, 43, 761–778.Google Scholar
  23. Dugdale, N., & Lowe, C. F. (2000). Testing for symmetry in the conditional discriminations of language-trained chimpanzees. Journal of the Experimental Analysis of Behavior, 73, 5–22.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dymond, S. (2014). Meaning is more than associations: relational operants and the search for derived relations in nonhumans. Journal of the Experimental Analysis of Behavior, 101, 152–155.CrossRefPubMedGoogle Scholar
  25. Frank, A. J., & Wasserman, E. A. (2005). Associative symmetry in the pigeon after successive matching-to-sample training. Journal of the Experimental Analysis of Behavior, 84(2), 147–165.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Galizio, M. (2003). The abstracted operant: a review of Relational frame theory: a post-Skinnerian account of human language and cognition. The Behavior Analyst, 26, 159–169.Google Scholar
  27. Gomez, J., Garcia, A., & Perez, V. (2014). Failure to find symmetry in pigeons after multiple exemplar training. Psicothema, 26, 435–441.Google Scholar
  28. Gorham, M., Barnes-Holmes, Y., Barnes-Holmes, D., & Berens, N. (2009). Derived comparative and transitive relations in young children with and without autism. The Psychological Record, 59, 221–246.CrossRefGoogle Scholar
  29. Hanson, H. M. (1959). Effects of discrimination training on stimulus generalization. Journal of Experimental Psychology, 58, 321–334.CrossRefPubMedGoogle Scholar
  30. Hayes, S. C. (1991). A relational control theory of stimulus equivalence. In L. J. Hayes & P. N. Chase (Eds.), Dialogues on verbal behavior: the first international institute on verbal relations (pp. 19–40). Reno, NV: Context Press.Google Scholar
  31. Hayes, S. C. (2016). Why contextual behavior science exists: an introduction to part 1. In R. D. Zettle, S. C. Hayes, D. Barnes-Holmes, & A. Biglan (Eds.), The Wiley handbook of contextual behavioral science (pp. 9–16). Hoboken, NJ: Wiley.Google Scholar
  32. Hayes, S. C., Barnes-Holmes, D., & Roche, B. (2001). Relational frame theory: a post-Skinnerian account of human language and cognition. New York: Plenum Press.Google Scholar
  33. Hayes, S. C., & Sanford, B. T. (2014). Cooperation came first: evolution and human cognition. Journal of the Experimental Analysis of Behavior, 101, 112–129.CrossRefPubMedGoogle Scholar
  34. Heagle, A. I., & Rehfeldt, R. A. (2006). Teaching perspective-taking skills to typically developing children through derived relational responding. Journal of Early and Intensive Behavior Intervention, 3, 1–34.CrossRefGoogle Scholar
  35. Hogan, D. E., & Zentall, T. R. (1977). Backward associations in the pigeon. The American Journal of Psychology, 3–15.Google Scholar
  36. Horne, P. J., & Lowe, C. F. (1996). On the origins of naming and other symbolic behavior. Journal of the Experimental Analysis of Behavior, 65(1), 185–241.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hughes, S., & Barnes-Holmes, D. (2014). Associative concept learning, stimulus equivalence, and relational frame theory: working out the similarities and differences between human and nonhuman behavior. Journal of the Experimental Analysis of Behavior, 101, 156–160.CrossRefPubMedGoogle Scholar
  38. Hughes, S., & Barnes-Holmes, D. (2016). Relational frame theory: the basic account. In R. D. Zettle, S. C. Hayes, D. Barnes-Holmes, & A. Biglan (Eds.), The Wiley handbook of contextual behavioral science (pp. 129–178). Hoboken, NJ: Wiley.Google Scholar
  39. Iversen, I. H. (1997). Matching-to-sample performance in rats: a case of mistaken identity? Journal of the Experimental Analysis of Behavior, 68(1), 27–45.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Iversen, I. H., Sidman, M., & Carrigan, P. (1986). Stimulus definition in conditional discriminations. Journal of the Experimental Analysis of Behavior, 45, 297–304.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kastak, C. R., Schusterman, R. J., & Kastak, D. (2001). Equivalence classification by California sea lions using class-specific reinforcers. Journal of the Experimental Analysis of Behavior, 76, 131–158.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Katz, J. S., & Wright, A. A. (2006). Same/different abstract-concept learning by pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 32, 80–86.Google Scholar
  43. Katz, J. S., Wright, A. A., & Bachevalier, J. (2002). Mechanisms of same/different abstract-concept learning by rhesus monkeys (Macaca mulatta). Journal of Experimental Psychology: animal Behavior Processes, 28, 358–368.PubMedGoogle Scholar
  44. Katz, J. S., Wright, A. A., & Bodily, K. D. (2007). Issues in the comparative cognition of abstract-concept learning. Comparative Cognition & Behavior Reviews, 2, 79–92.Google Scholar
  45. Kohler, W. (1918/1938). Simple structural functions in the chimpanzee and in the chicken. In W. D. Ellis (Ed.), A source book of gestalt psychology (pp. 217–227). London: Routledge & Kegan Paul.Google Scholar
  46. Lawrence, D. H., & DeRivera, J. (1954). Evidence for relational transposition. Journal of Comparative and Physiological Psychology, 47, 465–471.CrossRefPubMedGoogle Scholar
  47. Lazareva, O. F. (2012). Relational learning in a context of transposition: a review. Journal of the Experimental Analysis of Behavior, 97, 231–248.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lazareva, O. F., Miner, M., Wasserman, E. A., & Young, M. E. (2008). Multiple-pair training enhances transposition in pigeons. Learning & Behavior, 36, 174–187.CrossRefGoogle Scholar
  49. Lazareva, O. F., Wasserman, E. A., & Young, M. E. (2005). Transposition in pigeons: reassessing Spence (1937) with multiple discrimination training. Animal Learning & Behavior, 33, 22–46.CrossRefGoogle Scholar
  50. Lazareva, O. F., Young, M. E., & Wasserman, E. A. (2014). A three-component model of relational responding in the transposition paradigm. Journal of Experimental Psychology: Animal Learning and Cognition, 40, 63–80.Google Scholar
  51. Lionello, K. M., & Urcuioli, P. J. (1998). Control by sample location in pigeons matching to sample. Journal of the Experimental Analysis of Behavior, 70, 235–251.Google Scholar
  52. Lionello-DeNolf, K. M. (2009). The search for symmetry: 25 years in review. Learning & Behavior, 37, 188–203.CrossRefGoogle Scholar
  53. Lionello-DeNolf, K. M., & Urcuioli, P. J. (2002). Stimulus control topographies and tests of symmetry in pigeons. Journal of the Experimental Analysis of Behavior, 78, 467–495.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Lipkens, R., Hayes, S. C., & Hayes, L. J. (1993). Longitudinal study of the development of derived relations in an infant. Journal of Experimental Child Psychology, 56, 201–239.Google Scholar
  55. Lipkens, R., Kop, P. F., & Matthijs, W. (1988). A test of symmetry and transitivity in the conditional discrimination performances of pigeons. Journal of the Experimental Analysis of Behavior, 49, 395–409.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Luciano, C., Becerra, I. G., & Valverde, M. R. (2007). The role of multiple-exemplar training and naming in establishing derived equivalence in an infant. Journal of the Experimental Analysis of Behavior, 87, 349–365.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Mackintosh, N. J. (2000). Abstraction and discrimination. In C. Heyes & L. Huber (Eds.), The evolution of cognition (pp. 123–141). Cambridge, MA: MIT Press.Google Scholar
  58. McIlvane, W. J. (2013). Simple and complex discrimination learning. In G. J. Madden, W. V. Dube, T. D. Hackenberg, G. P. Hanley, & K. A. Lattal (Eds.), APA handbook of behavior analysis, Translating principles into practice (Vol. 2, pp. 129–163). Washington, DC: American Psychological Association.Google Scholar
  59. McIlvane, W. J. (2014). “Associative concept learning in animals” by Zentall, Wasserman, and Urcuioli: a commentary. Journal of the Experimental Analysis of Behavior, 101, 161–164.Google Scholar
  60. McIlvane, W. J., & Dube, W. V. (2003). Stimulus control topography coherence theory: foundations and extensions. The Behavior Analyst, 26, 195–213.Google Scholar
  61. McIlvane, W. J., Serna, R. W., Dube, W. V., & Stromer, R. (2000). Stimulus control topography coherence and stimulus equivalence: reconciling test outcomes with theory. In J. C. Leslie & D. Blackman (Eds.), Experimental and applied analysis of human behavior (pp. 85–110). Reno, NV: Context Press.Google Scholar
  62. Neuringer, A. (2002). Operant variability: evidence, functions, and theory. Psychonomic Bulletin & Review, 9, 672–705.CrossRefGoogle Scholar
  63. Oden, D. L., Thompson, R. K., & Premack, D. (1988). Spontaneous transfer of matching by infant chimpanzees (Pan troglodytes). Journal of Experimental Psychology: Animal Behavior Processes, 14, 140–145.PubMedGoogle Scholar
  64. O'Donnell, J., & Saunders, K. J. (2003). Equivalence relations in individuals with language limitations and mental retardation. Journal of the Experimental Analysis of Behavior, 80(1), 131–157.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Pelaez, M., Gewirtz, J. L., Sanchez, A., & Mahabir, N. M. (2000). Exploring stimulus equivalence formation in infants. Behavioral Development Bulletin, 9, 20–25.CrossRefGoogle Scholar
  66. Penn, D. C., Holyoak, K. J., & Povinelli, D. J. (2008). Darwin's mistake: explaining the discontinuity between human and nonhuman minds. Behavioral and Brain Sciences, 31, 109–130.PubMedGoogle Scholar
  67. Pilgrim, C., & Galizio, M. (1996). Stimulus equivalence: a class of correlations, or a correlation of classes? In T. R. Zentall & P. M. Smeets (Eds.), Advances in psychology: stimulus class formation in humans and animals (Vol. 117, pp. 173–195). Amsterdam: Elsevier.Google Scholar
  68. Pilgrim, C., & Galizio, M. (2000). Stimulus equivalence and units of analysis. In J. C. Leslie & D. Blackman (Eds.), Experimental and applied analysis of human behavior (pp. 111–126). Reno, NV: Context Press.Google Scholar
  69. Pilgrim, C., Jackson, J., & Galizio, M. (2000). Acquisition of arbitrary conditional discriminations by young normally developing children. Journal of the Experimental Analysis of Behavior, 73, 177–193.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Pinker, S. (1994). The language instinct: the new science of language and mind. New York, NY: HarperCollins.CrossRefGoogle Scholar
  71. Premack, D. (1978). On the abstractness of human concepts: why it would be difficult to talk to a pigeon. In S. H. Hulse, H. E. Fowler, & W. K. Honig (Eds.), Cognitive processes in animal behavior (pp. 423–451). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  72. Prichard, A., Panoz-Brown, D., Bruce, K., & Galizio, M. (2015). Emergent identity but not symmetry following successive olfactory discrimination training in rats. Journal of the Experimental Analysis of Behavior, 104(2), 133–145.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Reese, H. W. (1968). The perception of stimulus relations: discrimination learning and transposition. New York: Academic.Google Scholar
  74. Rodewald, H. K. (1974). Symbolic matching-to-sample by pigeons. Psychological Reports, 34, 987–990.CrossRefGoogle Scholar
  75. Savage-Rumbaugh, E. S. (1986). Ape language: from conditioned response to symbol. New York: Columbia University Press.Google Scholar
  76. Schusterman, R. J., & Kastak, D. (1993). A California sea lion (Zalophus californianus) is capable of forming equivalence relations. The Psychological Record, 43, 823.Google Scholar
  77. Sidman, M. (1971). Reading and auditory-visual equivalences. Journal of Speech, Language, and Hearing Research, 14, 5–13.CrossRefGoogle Scholar
  78. Sidman, M. (1994). Equivalence relations and behavior: a research story. Boston: Authors Cooperative.Google Scholar
  79. Sidman, M. (2000). Equivalence relations and the reinforcement contingency. Journal of the Experimental Analysis of Behavior, 74, 127–146.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Sidman, M., Rauzin, R., Lazar, R., Cunningham, S., Tailby, W., & Carrigan, P. (1982). A search for symmetry in the conditional discriminations of rhesus monkeys, baboons, and children. Journal of the Experimental Analysis of Behavior, 37, 23–44.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Sidman, M., & Tailby, W. (1982). Conditional discrimination vs. matching to sample: an expansion of the testing paradigm. Journal of the Experimental Analysis of Behavior, 37, 5–22.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Skinner, B. F. (1953). Science and human behavior. New York: MacMillan.Google Scholar
  83. Skinner, B. F. (1956). A case history in scientific method. American Psychologist, 11, 221–233.Google Scholar
  84. Skinner, B. F. (1957). Verbal behavior. New York: Vintage.CrossRefGoogle Scholar
  85. Skinner, B. F. (1976). About behaviorism. New York: Appleton- Century-Crofts.Google Scholar
  86. Spence, K. W. (1937). The differential response in animals to stimuli varying within a single dimension. Psychological Review, 44, 430–444.CrossRefGoogle Scholar
  87. Suddendorf, T. (2013). The gap: the science of what separates us from other animals. Philadelphia, PA: Basic Books.Google Scholar
  88. Sweeney, M. M., & Urcuioli, P. J. (2010). Reflexivity in pigeons. Journal of the Experimental Analysis of Behavior, 94, 267–282.Google Scholar
  89. Urcuioli, P. J. (2008). Associative symmetry, antisymmetry, and a theory of pigeon’s equivalence class formation. Journal of the Experimental Analysis of Behavior, 90, 257–282.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Urcuioli, P. J. (2011). Emergent identity matching after successive matching training, I: reflexivity or generalized identity? Journal of the Experimental Analysis of Behavior, 96, 329–341.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Urcuioli, P. J. (2015). A successful search for symmetry. Conductual, 3, 4–25.PubMedPubMedCentralGoogle Scholar
  92. Urcuioli, P. J., & Swisher, M. (2012a). A replication and extension of the antisymmetry effect in pigeons. Journal of the Experimental Analysis of Behavior, 98, 283–293.PubMedPubMedCentralGoogle Scholar
  93. Urcuioli, P. J., & Swisher, M. (2012b). Emergent identity matching after successive matching training. II: reflexivity or transitivity? Journal of the Experimental Analysis of Behavior, 97, 5–27.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Urcuioli, P. J., & Swisher, M. J. (2015). Transitive and anti-transitive emergent relations in pigeons: support for a theory of stimulus-class formation. Behavioural Processes, 112, 49–60.CrossRefPubMedGoogle Scholar
  95. Urcuioli, P. J., Zentall, T. R., Jackson-Smith, P., & Steirn, J. N. (1989). Evidence for common coding in many-to-one matching: retention, intertrial interference, and transfer. Journal of Experimental Psychology: Animal Behavior Processes, 15(3), 264–273.Google Scholar
  96. Vaughn, W. (1988). Formation of equivalence sets in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 14, 36–42.Google Scholar
  97. Velasco, S. M., Huziwara, E. M., Machado, A., & Tomanari, G. Y. (2010). Associative symmetry by pigeons after few-exemplar training. Journal of the Experimental Analysis of Behavior, 94, 283–295.CrossRefPubMedPubMedCentralGoogle Scholar
  98. Waxman, S. R., & Gelman, S. A. (2010). Different kinds of concepts and different kinds of words: what words to for human cognition. In D. Mareschal, P. C. Quinn, & S. E. G. Lea (Eds.), The making of human concepts (pp. 99–130). NY: Oxford University Press.CrossRefGoogle Scholar
  99. Weil, T. M., Hayes, S. C., & Capurro, P. (2011). Establishing a deictic relational repertoire in young children. The Psychological Record, 61, 371–390.CrossRefGoogle Scholar
  100. Wright, A. A., Magnotti, J. F., Katz, J. S., Leonard, K., & Kelly, D. M. (2016). Concept learning set-size functions for Clark’s nutcrackers. Journal of the Experimental Analysis of Behavior, 105(1), 76–84.CrossRefPubMedGoogle Scholar
  101. Wright, A. A., Magnotti, J. F., Katz, J. S., Leonard, K., Vernouillet, A., & Kelly, D. M. (2017). Corvids outperform pigeons and primates in learning a basic concept. Psychological Science, 28, 437–444.Google Scholar
  102. Wright, A. A., Rivera, J. J., Katz, J. S., & Bachevalier, J. (2003). Abstract-concept learning and list-memory processing by capuchin and rhesus monkeys. Journal of Experimental Psychology: Animal Behavior Processes, 29(3), 184–198.PubMedGoogle Scholar
  103. Yamamoto, J. I., & Asano, T. (1995). Stimulus equivalence in a chimpanzee (Pan troglodytes). The Psychological Record, 45, 3–21.Google Scholar
  104. Zentall, T. R., Wasserman, E. A., & Urcuioli, P. J. (2014). Associative concept learning in animals. Journal of the Experimental Analysis of Behavior, 101(1), 130–151.CrossRefPubMedGoogle Scholar
  105. Zinn, T. E., Newland, M. C., & Ritchie, K. E. (2015). The efficiency and efficacy of equivalence-based learning: a randomized controlled trial. Journal of Applied Behavior Analysis, 48, 865–882.CrossRefPubMedGoogle Scholar

Copyright information

© Association for Behavior Analysis International 2017

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of North Carolina WilmingtonWilmingtonUSA

Personalised recommendations