Advertisement

Current Molecular Biology Reports

, Volume 5, Issue 1, pp 65–74 | Cite as

MicroRNAs Are Critical Regulators of Osteoclast Differentiation

  • Henry C. Hrdlicka
  • Sun-Kyeong Lee
  • Anne M. DelanyEmail author
MicroRNAs in Skeletal Development (A Delany, Section Editor)
  • 18 Downloads
Part of the following topical collections:
  1. Topical Collection on MicroRNAs in Skeletal Development

Abstract

Purpose of Review

Our goal is to comprehensively review the most recent reports of microRNA (miRNA) regulation of osteoclastogenesis. We highlight validated miRNA-target interactions and their place in the signaling networks controlling osteoclast differentiation and function.

Recent Findings

Using unbiased approaches to identify miRNAs of interest and reporter-3′UTR assays to validate interactions, recent studies have elucidated the impact of specific miRNA-mRNA interactions during in vitro osteoclastogenesis. There has been a focus on signaling mediators downstream of the RANK and CSF1R signaling, and genes essential for differentiation and function. For example, several miRNAs directly and indirectly target the master osteoclast transcription factor, Nfatc1 (e.g., miR-124 and miR-214) and Rho-GTPases, Cdc42, and Rac1 (e.g., miR-29 family).

Summary

Validating miRNA expression patterns, targets, and impact in osteoclasts and other skeletal cells is critical for understanding basic bone biology and for fulfilling the therapeutic potential of miRNA-based strategies in the treatment bone diseases.

Keywords

Osteoclast Differentiation Fusion miRNA Non-coding RNA Microarray 

Notes

Acknowledgements

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors thank Dr. Julia Charles (Brigham and Women’s Hospital, Boston, MA) for her careful review of the manuscript.

Funding information

This work was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health [AR064867, AMD/SKL]; the National Institutes for Dental and Craniofacial Research [T90DE21989]; and the Center for Molecular Oncology at UConn Health.

Compliance with Ethical Standards

Conflict of Interest

Henry C. Hrdlicka, Sun-Kyeong Lee, and Anne M. Delany each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Long CL, Humphrey MB. Osteoimmunology: the expanding role of immunoreceptors in osteoclasts and bone remodeling. Bonekey Rep. 2012;1:59.Google Scholar
  2. 2.
    •• Amarasekara DS, Yun H, Kim S, Lee N, Kim H, Rho J. Regulation of osteoclast differentiation by cytokine networks. Immune Netw. 2018;18(1):e8 This paper concisely summarizes the pro- and anti-osteoclastic impact of widely studied immunomodulatory cytokines. PubMedPubMedCentralGoogle Scholar
  3. 3.
    Schett G. Effects of inflammatory and anti-inflammatory cytokines on the bone. Eur J Clin Investig. 2011;41(12):1361–6.Google Scholar
  4. 4.
    Franceschetti T, Dole NS, Kessler CB, Lee S-K, Delany AM. Pathway analysis of microRNA expression profile during murine osteoclastogenesis. PLoS One. 2014;9(9):e107262.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Sugatani T, Hruska KA. Impaired micro-RNA pathways diminish osteoclast differentiation and function. J Biol Chem. 2009;284(7):4667–78.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Sugatani T, Hildreth BE 3rd, Toribio RE, Malluche HH, Hruska KA. Expression of DGCR8-dependent microRNAs is indispensable for osteoclastic development and bone-resorbing activity. J Cell Biochem. 2014;115(6):1043–7.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Mizoguchi F, Izu Y, Hayata T, Hemmi H, Nakashima K, Nakamura T, et al. Osteoclast-specific Dicer gene deficiency suppresses osteoclastic bone resorption. J Cell Biochem. 2010;109(5):866–75.PubMedGoogle Scholar
  8. 8.
    Meijer HA, Smith EM, Bushell M. Regulation of miRNA strand selection: follow the leader? Biochem Soc Trans. 2014;42(4):1135–40.PubMedGoogle Scholar
  9. 9.
    Noland CL, Doudna JA. Multiple sensors ensure guide strand selection in human RNAi pathways. Rna. 2013;19(5):639–48.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Bartel DP. MicroRNA target recognition and regulatory functions. Cell. 2009;136(2):215–33.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Hausser J, Zavolan M. Identification and consequences of miRNA–target interactions — beyond repression of gene expression. Nat Rev Genet. 2014;15:599–612.PubMedGoogle Scholar
  12. 12.
    Jacome-Galarza CE, Lee SK, Lorenzo JA, Aguila HL. Identification, characterization, and isolation of a common progenitor for osteoclasts, macrophages, and dendritic cells from murine bone marrow and periphery. J Bone Miner Res. 2013;28(5):1203–13.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Yasui T, Kadono Y, Nakamura M, Oshima Y, Matsumoto T, Masuda H, et al. Regulation of RANKL-induced osteoclastogenesis by TGF-beta through molecular interaction between Smad3 and Traf6. J Bone Miner Res. 2011;26(7):1447–56.PubMedGoogle Scholar
  14. 14.
    Chen ZJ. Ubiquitin signaling in the NF-κB pathway. Nat Cell Biol. 2005;7(8):758–65.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Yu FY, Xie CQ, Sun JT, Peng W, Huang XW. Overexpressed miR-145 inhibits osteoclastogenesis in RANKL-induced bone marrow-derived macrophages and ovariectomized mice by regulation of Smad3. Life Sci. 2018;202:11–20.PubMedGoogle Scholar
  16. 16.
    •• de la Rica L, Garcia-Gomez A, Comet NR, Rodriguez-Ubreva J, Ciudad L, Vento-Tormo R, et al. NF-kappaB-direct activation of microRNAs with repressive effects on monocyte-specific genes is critical for osteoclast differentiation. Genome Biol. 2015;16:2 This study extensively characterizes miRNA expression profiles during osteoclastogenesis and demonstrates the necessity of NFκB transcription factor activity for the upregulation of various pro-osteoclast miRNAs. PubMedPubMedCentralGoogle Scholar
  17. 17.
    Puzik A, Rupp J, Troger B, Gopel W, Herting E, Hartel C. Insulin-like growth factor-I regulates the neonatal immune response in infection and maturation by suppression of IFN-gamma. Cytokine. 2012;60(2):369–76.PubMedGoogle Scholar
  18. 18.
    Mabilleau G, Chappard D, Sabokbar A. Role of the A20-TRAF6 Axis in lipopolysaccharide-mediated osteoclastogenesis. J Biol Chem. 2011;286(5):3242–9.PubMedGoogle Scholar
  19. 19.
    • Guo LJ, Liao L, Yang L, Li Y, Jiang TJ. MiR-125a TNF receptor-associated factor 6 to inhibit osteoclastogenesis. Exp Cell Res. 2014;321(2):142–52 This report provides a thorough schematic for investigating the general role of a miRNA during osteoclastogenesis, its targets, and its broader mechanism of action. PubMedGoogle Scholar
  20. 20.
    Lee Y, Kim HJ, Park CK, Kim YG, Lee HJ, Kim JY, et al. MicroRNA-124 regulates osteoclast differentiation. Bone. 2013;56(2):383–9.Google Scholar
  21. 21.
    Lu SY, Li M, Lin YL. Mitf regulates osteoclastogenesis by modulating NFATc1 activity. Exp Cell Res. 2014;328(1):32–43.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhang J, Zhao H, Chen J, Xia B, Jin Y, Wei W, et al. Interferon-beta-induced miR-155 inhibits osteoclast differentiation by targeting SOCS1 and MITF. FEBS Lett. 2012;586(19):3255–62.PubMedGoogle Scholar
  23. 23.
    Zhao, H, Zhang, J, Shao, H, Liu, J, Jin, M, Chen, J, and Huang, Y. miRNA-340 inhibits osteoclast differentiation via repression of MITF. Biosci Rep, 2017;37(4).  https://doi.org/10.1042/BSR20170302
  24. 24.
    Ohishi M, Matsumura Y, Aki D, Mashima R, Taniguchi K, Kobayashi T, et al. Suppressors of cytokine signaling-1 and -3 regulate osteoclastogenesis in the presence of inflammatory cytokines. J Immunol. 2005;174(5):3024–31.PubMedGoogle Scholar
  25. 25.
    Houde N, Chamoux E, Bisson M, Roux S. Transforming growth factor-β1 (TGF-β1) induces human osteoclast apoptosis by up-regulating Bim. J Biol Chem. 2009;284(35):23397–404.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Zhao H, Zhang J, Shao H, Liu J, Jin M, Chen J, et al. Transforming growth factor beta1/Smad4 signaling affects osteoclast differentiation via regulation of miR-155 expression. Mol Cells. 2017;40(3):211–21.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Moon JB, Kim JH, Kim K, Youn BU, Ko A, Lee SY, et al. Akt induces osteoclast differentiation through regulating the GSK3beta/NFATc1 signaling cascade. J Immunol. 2012;188(1):163–9.PubMedGoogle Scholar
  28. 28.
    Bai D, Ueno L, Vogt PK. Akt-mediated regulation of NFκB and the essentialness of NFκB for the oncogenicity of PI3K and Akt. Int J Cancer. 2009;125(12):2863–70.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Zhao C, Sun W, Zhang P, Ling S, Li Y, Zhao D, et al. miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biol. 2015;12(3):343–53.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Cai M, Yang L, Zhang S, Liu J, Sun Y, Wang X. A bone-resorption surface-targeting nanoparticle to deliver anti-miR214 for osteoporosis therapy. Int J Nanomedicine. 2017;12:7469–82.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Govender D, Chetty R. Gene of the month: PTEN. J Clin Pathol. 2012;65(7):601–3.PubMedGoogle Scholar
  32. 32.
    Cong F, Wu N, Tian X, Fan J, Liu J, Song T, et al. MicroRNA-34c promotes osteoclast differentiation through targeting LGR4. Gene. 2017;610:1–8.PubMedGoogle Scholar
  33. 33.
    Luo J, Yang Z, Ma Y, Yue Z, Lin H, Qu G, et al. LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Nat Med. 2016;22(5):539–46.PubMedGoogle Scholar
  34. 34.
    Lutter AH, Hempel U, Anderer U, Dieter P. Biphasic influence of PGE2 on the resorption activity of osteoclast-like cells derived from human peripheral blood monocytes and mouse RAW264.7 cells. Prostaglandins Leukot Essent Fat Acids. 2016;111:1–7.Google Scholar
  35. 35.
    Han SY, Lee NK, Kim KH, Jang IW, Yim M, Kim JH, et al. Transcriptional induction of cyclooxygenase-2 in osteoclast precursors is involved in RANKL-induced osteoclastogenesis. Blood. 2005;106(4):1240.PubMedGoogle Scholar
  36. 36.
    Kaneko H, Mehrotra M, Alander C, Lerner U, Pilbeam C, Raisz L. Effects of prostaglandin E2 and lipopolysaccharide on osteoclastogenesis in RAW 264.7 cells. Prostaglandins Leukot Essent Fat Acids. 2007;77(3–4):181–6.Google Scholar
  37. 37.
    Franceschetti T, Kessler CB, Lee SK, Delany AM. miR-29 promotes murine osteoclastogenesis by regulating osteoclast commitment and migration. J Biol Chem. 2013;288(46):33347–60.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Steele R, Mott JL, Ray RB. MBP-1 upregulates miR-29b, which represses Mcl-1, collagens, and matrix metalloproteinase-2 in prostate cancer cells. Genes Cancer. 2010;1(4):381–7.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Sekiya Y, Ogawa T, Yoshizato K, Ikeda K, Kawada N. Suppression of hepatic stellate cell activation by microRNA-29b. Biochem Biophys Res Commun. 2011;412(1):74–9.PubMedGoogle Scholar
  40. 40.
    Rossi M, Pitari MR, Amodio N, Di Martino MT, Conforti F, Leone E, et al. miR-29b negatively regulates human osteoclastic cell differentiation and function: implications for the treatment of multiple myeloma-related bone disease. J Cell Physiol. 2013;228(7):1506–15.PubMedGoogle Scholar
  41. 41.
    Kim K, Kim JH, Lee J, Jin HM, Kook H, Kim KK, et al. MafB negatively regulates RANKL-mediated osteoclast differentiation. Blood. 2007;109(8):3253–9.PubMedGoogle Scholar
  42. 42.
    • Cheng P, Chen C, He HB, Hu R, Zhou HD, Xie H, et al. miR-148a regulates osteoclastogenesis by targeting V-maf musculoaponeurotic fibrosarcoma oncogene homolog B. J Bone Miner Res. 2013;28(5):1180–90 This work illustrates an excellent experimental approach for first identifiying a miRNA of interest and subsequently studying its role in vitro and in vivo.PubMedGoogle Scholar
  43. 43.
    Touaitahuata H, Blangy A, Vives V. Modulation of osteoclast differentiation and bone resorption by Rho GTPases. Small GTPases. 2014;5:e28119.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Koduru SV, Sun B-H, Walker JM, Zhu M, Simpson C, Dhodapkar M, et al. The contribution of cross-talk between the cell-surface proteins CD36 and CD47–TSP-1 in osteoclast formation and function. J Biol Chem. 2018;293(39):15055–69.PubMedGoogle Scholar
  45. 45.
    Kukita T, et al. RANKL-induced DC-STAMP is essential for osteoclastogenesis. J Exp Med. 2004;200(7):941–6.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Chiu Y, Ritchlin CT. DC-STAMP: a key regulator in osteoclast differentiation. J Cell Physiol. 2016;231(11):2402–7.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Dou C, Zhang C, Kang F, Yang X, Jiang H, Bai Y, et al. MiR-7b directly targets DC-STAMP causing suppression of NFATc1 and c-Fos signaling during osteoclast fusion and differentiation. Biochim Biophys Acta. 2014;1839(11):1084–96.PubMedGoogle Scholar
  48. 48.
    Kim K, Kim JH, Kim I, Lee J, Seong S, Park YW, et al. MicroRNA-26a regulates RANKL-induced osteoclast formation. Mol Cells. 2015;38(1):75–80.PubMedGoogle Scholar
  49. 49.
    Nishida T, Emura K, Kubota S, Lyons KM, Takigawa M. CCN family 2/connective tissue growth factor (CCN2/CTGF) promotes osteoclastogenesis via induction of and interaction with dendritic cell-specific transmembrane protein (DC-STAMP). J Bone Miner Res. 2011;26(2):351–63.PubMedGoogle Scholar
  50. 50.
    Sugatani T, Hruska KA. Down-regulation of miR-21 biogenesis by estrogen action contributes to osteoclastic apoptosis. J Cell Biochem. 2013;114(6):1217–22.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Sugatani T, Vacher J, Hruska KA. A microRNA expression signature of osteoclastogenesis. Blood. 2011;117(13):3648–57.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Hu C-H, Sui B-D, Du F-Y, Shuai Y, Zheng C-X, Zhao P, et al. miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice. Sci Rep. 2017;7:43191.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Mizoguchi F, Murakami Y, Saito T, Miyasaka N, Kohsaka H. miR-31 controls osteoclast formation and bone resorption by targeting RhoA. Arthritis Res Ther. 2013;15(5):R102.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Sun KT, Chen MY, Tu MG, Wang IK, Chang SS, Li CY. MicroRNA-20a regulates autophagy related protein-ATG16L1 in hypoxia-induced osteoclast differentiation. Bone. 2015;73:145–53.PubMedGoogle Scholar
  55. 55.
    Ma Y, Yang H, Huang J. Icariin ameliorates dexamethasoneinduced bone deterioration in an experimental mouse model via activation of microRNA186 inhibition of cathepsin K. Mol Med Rep. 2018;17(1):1633–41.PubMedGoogle Scholar
  56. 56.
    Li G, Bu J, Zhu Y, Xiao X, Liang Z, Zhang R. Curcumin improves bone microarchitecture in glucocorticoid-induced secondary osteoporosis mice through the activation of microRNA-365 via regulating MMP-9. Int J Clin Exp Pathol. 2015;8(12):15684–95.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Gramoun A, Azizi N, Sodek J, Heersche JN, Nakchbandi I, Manolson MF. Fibronectin inhibits osteoclastogenesis while enhancing osteoclast activity via nitric oxide and interleukin-1beta-mediated signaling pathways. J Cell Biochem. 2010;111(4):1020–34.PubMedGoogle Scholar
  58. 58.
    Ley K, Pramod AB, Croft M, Ravichandran KS, Ting JP. How mouse macrophages sense what is going on. Front Immunol. 2016;7:204.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Desiderio UV, Zhu X, Evans JP. ADAM2 interactions with mouse eggs and cell lines expressing α(4)/α(9) (ITGA4/ITGA9) integrins: implications for integrin-based adhesion and fertilization. PLoS One. 2010;5(10):e13744.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Zou W, Teitelbaum SL. Integrins, growth factors, and the osteoclast cytoskeleton. Ann N Y Acad Sci. 2010;1192:27–31.PubMedGoogle Scholar
  61. 61.
    Chatterjee D, Chakraborty M, Leit M, Neff L, Jamsa-Kellokumpu S, Fuchs R, et al. The osteoclast proton pump differs in its pharmacology and catalytic subunits from other vacuolar H(+)-ATPases. J Exp Biol. 1992;172:193–204.PubMedGoogle Scholar
  62. 62.
    Christensen J, Shastri VP. Matrix-metalloproteinase-9 is cleaved and activated by Cathepsin K. BMC Res Notes. 2015;8:322.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Oikawa T, Kuroda Y, Matsuo K. Regulation of osteoclasts by membrane-derived lipid mediators. Cell Mol Life Sci. 2013;70(18):3341–53.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Xing L, Boyce BF. Regulation of apoptosis in osteoclasts and osteoblastic cells. Biochem Biophys Res Commun. 2005;328(3):709–20.PubMedGoogle Scholar
  65. 65.
    Wu X, McKenna MA, Feng X, Nagy TR, McDonald JM. Osteoclast apoptosis: the role of Fas in vivo and in vitro. Endocrinology. 2003;144(12):5545–55.PubMedGoogle Scholar
  66. 66.
    Kagiya T, Nakamura S. Expression profiling of microRNAs in RAW264.7 cells treated with a combination of tumor necrosis factor alpha and RANKL during osteoclast differentiation. J Periodontal Res. 2013;48(3):373–85.PubMedGoogle Scholar
  67. 67.
    •• Dou C, Cao Z, Yang B, Ding N, Hou T, Luo F, et al. Changing expression profiles of lncRNAs, mRNAs, circRNAs and miRNAs during osteoclastogenesis. Sci Rep. 2016;6:21499 This study lays important ground work for studying more expansive non-coding RNA networks, including miRNAs that may be regulating osteoclast differentiation. PubMedPubMedCentralGoogle Scholar
  68. 68.
    Miller CH, Smith SM, Elguindy M, Zhang T, Xiang JZ, Hu X, et al. RBP-J-regulated miR-182 promotes TNF-alpha-induced osteoclastogenesis. J Immunol. 2016;196(12):4977–86.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Ma Y, Shan Z, Ma J, Wang Q, Chu J, Xu P, et al. Validation of downregulated microRNAs during osteoclast formation and osteoporosis progression. Mol Med Rep. 2016;13(3):2273–80.PubMedGoogle Scholar
  70. 70.
    De-Ugarte L, Serra-Vinardell J, Nonell L, Balcells S, Arnal M, Nogues X, et al. Expression profiling of microRNAs in human bone tissue from postmenopausal women. Hum Cell. 2018;31(1):33–41.PubMedGoogle Scholar
  71. 71.
    Gallagher JC, Tella SH. Prevention and treatment of postmenopausal osteoporosis. J Steroid Biochem Mol Biol. 2014;142:155–70.PubMedGoogle Scholar
  72. 72.
    Acosta JI, Mayer L, Talboom JS, Tsang CW, Smith CJ, Enders CK, et al. Transitional versus surgical menopause in a rodent model: etiology of ovarian hormone loss impacts memory and the acetylcholine system. Endocrinology. 2009;150(9):4248–59.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Holmdahl R, Malmstrom V, Burkhardt H. Autoimmune priming, tissue attack and chronic inflammation - the three stages of rheumatoid arthritis. Eur J Immunol. 2014;44(6):1593–9.PubMedGoogle Scholar
  74. 74.
    Rubin DC, Shaker A, Levin MS. Chronic intestinal inflammation: inflammatory bowel disease and colitis-associated colon cancer. Front Immunol. 2012;3:107.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Edens C, Robinson AB. Systemic lupus erythematosus, bone health, and osteoporosis. Curr Opin Endocrinol Diabetes Obes. 2015;22(6):422–31.PubMedGoogle Scholar
  76. 76.
    Franceschetti T, Dole NS, Kessler CB, Lee SK, Delany AM. Pathway analysis of microRNA expression profile during murine osteoclastogenesis. PLoS One. 2014;9(9):e107262.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Chen YG, Satpathy AT, Chang HY. Gene regulation in the immune system by long noncoding RNAs. Nat Immunol. 2017;18(9):962–72.PubMedGoogle Scholar
  78. 78.
    • Dang L, Liu J, Li F, Wang L, Li D, Guo B, et al. Targeted delivery systems for molecular therapy in skeletal disorders. Int J Mol Sci. 2016;17(3):428 This paper concisely reviews the currently known and utilized methods for targeting small molecules to the bone surface. PubMedPubMedCentralGoogle Scholar
  79. 79.
    •• Liu J, Dang L, Li D, Liang C, He X, Wu H, et al. A delivery system specifically approaching bone resorption surfaces to facilitate therapeutic modulation of microRNAs in osteoclasts. Biomaterials. 2015;52:148–60 This study provides a thorough outline for future work in miRNA delivery to the bone surface. PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Henry C. Hrdlicka
    • 1
  • Sun-Kyeong Lee
    • 2
  • Anne M. Delany
    • 1
    Email author
  1. 1.Center for Molecular Oncology, UConn HealthFarmingtonUSA
  2. 2.Center on Aging, UConn HealthFarmingtonUSA

Personalised recommendations