MicroRNA Applications in Marine Biology

  • Carolina A. BoninEmail author
  • Andre J. van Wijnen
  • Eric A. Lewallen
Population Genetics (E Lewallen and C Bonin, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Population Genetics


Purpose of Review

MicroRNAs (miRNAs) are single-stranded, short (~ 22 nt) non-coding RNAs that control gene expression in most metazoan taxa. These vital post-transcriptional regulators are emerging as a novel class of relatively well-conserved biomarkers useful to molecular ecologists working on non-model marine organisms. The purpose of this review is to provide researchers with a brief background on miRNAs and to explore recent applications in marine biology.

Recent Findings

MiRNA datasets have been broadly employed in studies concerning commercially important species (oysters and crustaceans), phylogenetics (particularly deep evolutionary splits), and environmental stressor responses (temperature and salinity). Most progress has been made in the characterization of cnidarian miRNAs and bivalve and crustacean immune-related miRNAs. The use of miRNAs in phylogenetics is still under debate due to the secondary loss of miRNAs in some lineages, but they have been successfully applied in the resolution of deep evolutionary splits. Finally, miRNAs have been investigated in abiotic stress responses, but data interpretation is limited by the high number of species-specific miRNAs detected in these studies. Improvements in miRNA database curation and functional annotation should provide more confidence in their use.


Due to their evolutionary conservation, resilience to degradation, and amenable bioinformatics workflows, miRNAs are a powerful molecular tool in marine genomics. MiRNA investigations regarding environmental stress response will be particularly useful due to their potential to reveal physiological alterations and disease. Thus, they may be ultimately utilized as bio-indicators of environmental health.


Marine invertebrates Epigenetics Ecological genomics Phylogenomics Epigenomics 



We are grateful to Dr. Michelle Penn-Marshall (Vice President for Research and Associate Provost) and Dr. Deidre Gibson (Chair, Department of Marine and Environmental Sciences) at Hampton University for logistical support. We also thank Nefertiti Smith and Isaiah Milton for assistance with acquiring literature used in this review.

Funding Information

This work was funded by Hampton University Faculty Research Awards to C. Bonin and E. Lewallen. Additionally, the National Oceanic and Atmospheric Administration Living Marine Resources Cooperative Science Center provided funds for the preparation of this manuscript (NOAA-LMRCSC-FY2016; Award #NA16SEC4810007).

Compliance with Ethical Standards

Conflict of Interest

All authors declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not involve human or animal subject studies performed by the authors.


  1. 1.
    Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.PubMedCrossRefGoogle Scholar
  2. 2.
    Reinhart BJ, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. MicroRNAs in plants. Genes Dev. 2002;16(13):1616–26.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Higgs PG, Lehman N. The RNA world: molecular cooperation at the origins of life. Nat Rev Genet. 2015;16(1):7–17.PubMedCrossRefGoogle Scholar
  5. 5.
    Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):D155–62.PubMedCrossRefGoogle Scholar
  6. 6.
    Friedman RC, et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Friedman LM, Dror AA, Mor E, Tenne T, Toren G, Satoh T, et al. MicroRNAs are essential for development and function of inner ear hair cells in vertebrates. Proc Natl Acad Sci U S A. 2009;106(19):7915–20.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Bartel DP. Metazoan MicroRNAs. Cell. 2018;173(1):20–51.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Piletic K, Kunej T. MicroRNA epigenetic signatures in human disease. Arch Toxicol. 2016;90(10):2405–19.PubMedCrossRefGoogle Scholar
  10. 10.
    Griffiths-Jones S. The microRNA registry. Nucleic Acids Res. 2004;32(Database issue):D109–11.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34(Database issue):D140–4.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Fraune S, Forêt S, Reitzel AM. Using Nematostella vectensis to study the interactions between genome, epigenome, and bacteria in a changing environment. Front Mar Sci. 2016;3:148.CrossRefGoogle Scholar
  13. 13.
    Chen H, Wang H, Jiang S, Xu J, Wang L, Qiu L, et al. An oyster species-specific miRNA scaffold42648_5080 modulates haemocyte migration by targeting integrin pathway. Fish Shellfish Immunol. 2016;57:160–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Chen H, et al. An invertebrate-specific and immune-responsive microRNA augments oyster haemocyte phagocytosis by targeting CgIkappaB2. Sci Rep. 2016;6:29591.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Rosani U, Pallavicini A, Venier P. The miRNA biogenesis in marine bivalves. PeerJ. 2016;4:e1763.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Chen H, Xin L, Song X, Wang L, Wang W, Liu Z, et al. A norepinephrine-responsive miRNA directly promotes CgHSP90AA1 expression in oyster haemocytes during desiccation. Fish Shellfish Immunol. 2017;64:297–307.PubMedCrossRefGoogle Scholar
  17. 17.
    Yang G, Yang L, Zhao Z, Wang J, Zhang X. Signature miRNAs involved in the innate immunity of invertebrates. PLoS One. 2012;7(6):e39015.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Huang T, Xu D, Zhang X. Characterization of host microRNAs that respond to DNA virus infection in a crustacean. BMC Genomics. 2012;13:159.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Huang T, Zhang X. Functional analysis of a crustacean microRNA in host-virus interactions. J Virol. 2012;86(23):12997–3004.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Huang Y, et al. Host microRNA-217 promotes white spot syndrome virus infection by targeting tube in the Chinese mitten crab (Eriocheir sinensis). Front Cell Infect Microbiol. 2017;7:164.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Li M, Huang Q, Wang J, Li C. Differential expression of microRNAs in Portunus trituberculatus in response to Hematodinium parasites. Fish Shellfish Immunol. 2018;83:134–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Meng X, Zhang X, Li J, Liu P. Identification and comparative profiling of ovarian and testicular microRNAs in the swimming crab Portunus trituberculatus. Gene. 2018;640:6–13.PubMedCrossRefGoogle Scholar
  23. 23.
    Waiho K, et al. Gonadal microRNA expression profiles and their potential role in sex differentiation and gonadal maturation of mud crab Scylla paramamosain. Mar Biotechnol (NY). 2019;21(3):320–34.CrossRefGoogle Scholar
  24. 24.
    Ren X, Cui Y, Gao B, Liu P, Li J. Identification and profiling of growth-related microRNAs of the swimming crab Portunus trituberculatus by using Solexa deep sequencing. Mar Genomics. 2016;28:113–20.PubMedCrossRefGoogle Scholar
  25. 25.
    Jiao Y, et al. Identification and characterization of microRNAs in pearl oyster Pinctada martensii by Solexa deep sequencing. Mar Biotechnol (NY). 2014;16(1):54–62.CrossRefGoogle Scholar
  26. 26.
    Chen M, Zhang X, Liu J, Storey KB. High-throughput sequencing reveals differential expression of miRNAs in intestine from sea cucumber during aestivation. PLoS One. 2013;8(10):e76120.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Chen M, Storey KB. Large-scale identification and comparative analysis of miRNA expression profile in the respiratory tree of the sea cucumber Apostichopus japonicus during aestivation. Mar Genomics. 2014;13:39–44.PubMedCrossRefGoogle Scholar
  28. 28.
    Chen M, et al. The potential contribution of miRNA-200-3p to the fatty acid metabolism by regulating AjEHHADH during aestivation in sea cucumber. PeerJ. 2018;6:e5703.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Baumgarten S, et al. Evidence for miRNA-mediated modulation of the host transcriptome in cnidarian-dinoflagellate symbiosis. Mol Ecol. 2018;27(2):403–18.PubMedCrossRefGoogle Scholar
  30. 30.
    Berezikov E. Evolution of microRNA diversity and regulation in animals. Nat Rev Genet. 2011;12(12):846–60.PubMedCrossRefGoogle Scholar
  31. 31.
    Thomson RC, Plachetzki DC, Mahler DL, Moore BR. A critical appraisal of the use of microRNA data in phylogenetics. Proc Natl Acad Sci U S A. 2014;111(35):E3659–68.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Maxwell EK, et al. MicroRNAs and essential components of the microRNA processing machinery are not encoded in the genome of the ctenophore Mnemiopsis leidyi. BMC Genomics. 2012;13:714.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Tarver JE, Taylor RS, Puttick MN, Lloyd GT, Pett W, Fromm B, et al. Well-annotated microRNAomes do not evidence pervasive miRNA loss. Genome Biol Evol. 2018;10(6):1457–70.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Tarver JE, Sperling EA, Nailor A, Heimberg AM, Robinson JM, King BL, et al. miRNAs: small genes with big potential in metazoan phylogenetics. Mol Biol Evol. 2013;30(11):2369–82.PubMedCrossRefGoogle Scholar
  35. 35.
    Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X. MicroRNA: function, detection, and bioanalysis. Chem Rev. 2013;113(8):6207–33.PubMedCrossRefGoogle Scholar
  36. 36.
    Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23(20):4051–60.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18(24):3016–27.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Nguyen TA, Jo MH, Choi YG, Park J, Kwon SC, Hohng S, et al. Functional anatomy of the human microprocessor. Cell. 2015;161(6):1374–87.PubMedCrossRefGoogle Scholar
  39. 39.
    Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Kawamata T, Tomari Y. Making RISC. Trends Biochem Sci. 2010;35(7):368–76.PubMedCrossRefGoogle Scholar
  41. 41.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol. 2006;57:19–53.CrossRefGoogle Scholar
  43. 43.
    Moran Y, Fredman D, Praher D, Li XZ, Wee LM, Rentzsch F, et al. Cnidarian microRNAs frequently regulate targets by cleavage. Genome Res. 2014;24(4):651–63.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell. 2004;15(2):185–97.PubMedCrossRefGoogle Scholar
  45. 45.
    Frohn A, Eberl HC, Stöhr J, Glasmacher E, Rüdel S, Heissmeyer V, et al. Dicer-dependent and -independent Argonaute2 protein interaction networks in mammalian cells. Mol Cell Proteomics. 2012;11(11):1442–56.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Chen CY, Shyu AB. Mechanisms of deadenylation-dependent decay. Wiley Interdiscip Rev RNA. 2011;2(2):167–83.PubMedCrossRefGoogle Scholar
  47. 47.
    Chen CY, Zheng D, Xia Z, Shyu AB. Ago-TNRC6 triggers microRNA-mediated decay by promoting two deadenylation steps. Nat Struct Mol Biol. 2009;16(11):1160–6.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Djuranovic S, Nahvi A, Green R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science. 2012;336(6078):237–40.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Agarwal V, et al. Predicting effective microRNA target sites in mammalian mRNAs. elife. 2015;4:e05005.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Shabalina SA, Koonin EV. Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol. 2008;23(10):578–87.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N, et al. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature. 2008;455(7217):1193–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Robinson JM. MicroRNA expression during demosponge dissociation, reaggregation, and differentiation and a evolutionarily conserved demosponge miRNA expression profile. Dev Genes Evol. 2015;225(6):341–51.PubMedCrossRefGoogle Scholar
  53. 53.
    Hertel J, et al. The expansion of the metazoan microRNA repertoire. BMC Genomics. 2006;7:25.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Lee HC, et al. Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi. Mol Cell. 2010;38(6):803–14.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Christodoulou F, Raible F, Tomer R, Simakov O, Trachana K, Klaus S, et al. Ancient animal microRNAs and the evolution of tissue identity. Nature. 2010;463(7284):1084–8.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Krishna S, Nair A, Cheedipudi S, Poduval D, Dhawan J, Palakodeti D, et al. Deep sequencing reveals unique small RNA repertoire that is regulated during head regeneration in Hydra magnipapillata. Nucleic Acids Res. 2013;41(1):599–616.PubMedCrossRefGoogle Scholar
  57. 57.
    Roush S, Slack FJ. The let-7 family of microRNAs. Trends Cell Biol. 2008;18(10):505–16.PubMedCrossRefGoogle Scholar
  58. 58.
    Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401–14.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Zhao X, et al. High throughput sequencing of small RNAs transcriptomes in two Crassostrea oysters identifies microRNAs involved in osmotic stress response. Sci Rep. 2016;6:22687.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Sempere LF, et al. The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint. J Exp Zool B Mol Dev Evol. 2006;306(6):575–88.PubMedCrossRefGoogle Scholar
  61. 61.
    Sempere LF, Martinez P, Cole C, Baguñà J, Peterson KJ. Phylogenetic distribution of microRNAs supports the basal position of acoel flatworms and the polyphyly of Platyhelminthes. Evol Dev. 2007;9(5):409–15.PubMedCrossRefGoogle Scholar
  62. 62.
    Lyson TR, Sperling EA, Heimberg AM, Gauthier JA, King BL, Peterson KJ. MicroRNAs support a turtle+ lizard clade. Biol Lett. 2011;8(1):104–7.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Campbell LI, Rota-Stabelli O, Edgecombe GD, Marchioro T, Longhorn SJ, Telford MJ, et al. MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda. Proc Natl Acad Sci U S A. 2011;108(38):15920–4.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Rota-Stabelli O, et al. A congruent solution to arthropod phylogeny: phylogenomics, microRNAs and morphology support monophyletic Mandibulata. Proc Biol Sci. 2011;278(1703):298–306.PubMedCrossRefGoogle Scholar
  65. 65.
    Heimberg AM, Cowper-Sal-lari R, Sémon M, Donoghue PC, Peterson KJ. microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. Proc Natl Acad Sci U S A. 2010;107(45):19379–83.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Jekely G, Paps J, Nielsen C. The phylogenetic position of ctenophores and the origin(s) of nervous systems. Evodevo. 2015;6:1.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Mendell JT, Olson EN. MicroRNAs in stress signaling and human disease. Cell. 2012;148(6):1172–87.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    van Rooij E, Sutherland LB, Thatcher JE, DiMaio J, Naseem RH, Marshall WS, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A. 2008;105(35):13027–32.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Gleason LU. Applications and future directions for population transcriptomics in marine invertebrates. Curr Mol Biol Rep. 2019;5(3):116–27.CrossRefGoogle Scholar
  70. 70.
    Fast I, Hewel C, Wester L, Schumacher J, Gebert D, Zischler H, et al. Temperature-responsive miRNAs in Drosophila orchestrate adaptation to different ambient temperatures. RNA. 2017;23(9):1352–64.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    van Wijnen AJ, et al. MicroRNA functions in osteogenesis and dysfunctions in osteoporosis. Curr Osteopor Rep. 2013;11(2):72–82.CrossRefGoogle Scholar
  72. 72.
    Sonna LA, et al. Invited review: Effects of heat and cold stress on mammalian gene expression. J Appl Physiol (1985). 2002;92(4):1725–42.CrossRefGoogle Scholar
  73. 73.
    Sørensen JG, Kristensen TN, Loeschcke V. The evolutionary and ecological role of heat shock proteins. Ecol Lett. 2003;6(11):1025–37.CrossRefGoogle Scholar
  74. 74.
    Hofmann GE, et al. Heat-shock protein expression is absent in the Antarctic fish Trematomus bernacchii (family Nototheniidae). J Exp Biol. 2000;203(15):2331–9.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Clark MS, Fraser KP, Peck LS. Antarctic marine molluscs do have an HSP70 heat shock response. Cell Stress Chaperones. 2008;13(1):39–49.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Gleason LU, Burton RS. RNA-seq reveals regional differences in transcriptome response to heat stress in the marine snail Chlorostoma funebralis. Mol Ecol. 2015;24(3):610–27.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Schoville SD, et al. Investigating the molecular basis of local adaptation to thermal stress: population differences in gene expression across the transcriptome of the copepod Tigriopus californicus. BMC Evol Biol. 2012;12:170.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Pereira RJ, Barreto FS, Burton RS. Ecological novelty by hybridization: experimental evidence for increased thermal tolerance by transgressive segregation in Tigriopus californicus. Evolution. 2014;68(1):204–15.PubMedCrossRefGoogle Scholar
  79. 79.
    Graham AM, Barreto FS. Novel microRNAs are associated with population divergence in transcriptional response to thermal stress in an intertidal copepod. Mol Ecol. 2019;28(3):584–99.PubMedCrossRefGoogle Scholar
  80. 80.
    Gajigan AP, Conaco C. A microRNA regulates the response of corals to thermal stress. Mol Ecol. 2017;26(13):3472–83.PubMedCrossRefGoogle Scholar
  81. 81.
    Zhao B, et al. Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol Biol. 2009;10(1):29.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Chen K, Li E, Li T, Xu C, Wang X, Lin H, et al. Transcriptome and molecular pathway analysis of the hepatopancreas in the Pacific white shrimp Litopenaeus vannamei under chronic low-salinity stress. PLoS One. 2015;10(7):e0131503.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Chen X, et al. Transcriptional responses to low-salinity stress in the gills of adult female Portunus trituberculatus. Comp Biochem Physiol Part D Genomics Proteomics. 2019;29:86–94.PubMedCrossRefGoogle Scholar
  84. 84.
    Wang H, Wei H, Tang L, Lu J, Mu C, Wang C. Identification and characterization of miRNAs in the gills of the mud crab (Scylla paramamosain) in response to a sudden drop in salinity. BMC Genomics. 2018;19(1):609.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Tian Y, et al. Salinity stress-induced differentially expressed miRNAs and target genes in sea cucumbers Apostichopus japonicus. Cell Stress Chaperones. 2019;24(4):719–33 1–15.PubMedCrossRefGoogle Scholar
  86. 86.
    Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39(16):7223–33.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Makarova JA, Shkurnikov MU, Wicklein D, Lange T, Samatov TR, Turchinovich AA, et al. Intracellular and extracellular microRNA: an update on localization and biological role. Prog Histochem Cytochem. 2016;51(3–4):33–49.PubMedCrossRefGoogle Scholar
  88. 88.
    Balzano F, Deiana M, Dei Giudici S, Oggiano A, Baralla A, Pasella S, et al. miRNA stability in frozen plasma samples. Molecules. 2015;20(10):19030–40.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Ge Q, Zhou Y, Lu J, Bai Y, Xie X, Lu Z. miRNA in plasma exosome is stable under different storage conditions. Molecules. 2014;19(2):1568–75.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Carolina A. Bonin
    • 1
    Email author
  • Andre J. van Wijnen
    • 2
  • Eric A. Lewallen
    • 3
  1. 1.Department of Marine and Environmental SciencesHampton UniversityHamptonUSA
  2. 2.Department of Biochemistry & Molecular Biology and Orthopedic SurgeryMayo ClinicRochesterUSA
  3. 3.Department of Biological SciencesHampton UniversityHamptonUSA

Personalised recommendations