Advertisement

Invariant Spanning Trees for Quadratic Rational Maps

  • Anastasia Shepelevtseva
  • Vladlen TimorinEmail author
Research Contribution

Abstract

We study Thurston equivalence classes of quadratic post-critically finite branched coverings. For these maps, we introduce and study invariant spanning trees. We give a computational procedure for searching for invariant spanning trees. This procedure uses bisets over the fundamental group of a punctured sphere. We also introduce a new combinatorial invariant of Thurston classes—the ivy graph.

Keywords

Complex dynamics Invariant tree Iterated monodromy group 

Mathematics Subject Classification

Primary 37F20 Secondary 37F10 

Notes

Acknowledgements

The authors are grateful to D. Dudko and M. Hlushchanka for useful discussions, to D. Schleicher and Jacobs University Bremen for hospitality and inspiring working conditions during the workshop “Dynamics, Geometry and Groups” in May 2017, where these and other enlightening discussions took place. We are also grateful to the referee for valuable remarks and suggestions.

References

  1. Bartholdi, L., Dudko, D.: Algorithmic aspects of branched coverings. Ann. Fac. Sci. Toulouse 5, 1219–1296 (2017)MathSciNetCrossRefGoogle Scholar
  2. Bartholdi, L., Nekrashevych, V.: Thurston equivalence of topological polynomials. Acta Math. 197, 1–51 (2006)MathSciNetCrossRefGoogle Scholar
  3. Bielefeld, B., Fisher, Y., Hubbard, J.: The classification of critically preperiodic polynomials as dynamical systems. J. AMS 5(4), 721–762 (1992)MathSciNetzbMATHGoogle Scholar
  4. Bonk, M., Meyer, D.: Expanding Thurston maps. AMS Mathematical Surveys and Monographs, vol. 225 (2017)Google Scholar
  5. Cannon, J., Floyd, W., Parry, W.: Finite subdivision rules. Conform. Geom. Dyn. 5(8), 153–196 (2001)MathSciNetCrossRefGoogle Scholar
  6. Cordwell, K., Gilbertson, S., Nuechterlein, N., Pilgrim, K., Pinella, S.: The classification of critically fixed rational maps. Conform. Geom. Dyn. 19, 51–94 (2015)MathSciNetCrossRefGoogle Scholar
  7. Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton Univ. Press, Princeton (2012)zbMATHGoogle Scholar
  8. Douady, A., Hubbard, J.H.: Étude dynamique des polynômes complexes I, II. Publications Mathématiques d’Orsay 84-02 (1984)Google Scholar
  9. Douady, A., Hubbard, J.H.: Étude dynamique des polynômes complexes I, II. Publications Mathématiques d’Orsay 85-04 (1985)Google Scholar
  10. Hlushchanka, M.: Invariant Graphs, Tilings, and Iterated Monodromy Groups. Ph.D. Thesis, Jacobs University Bremen (2017)Google Scholar
  11. Hubbard, J., Schleicher, D.: The spider algorithm. Proc. Symp. Appl. Math. 49(AMS), 155–180 (1994)MathSciNetzbMATHGoogle Scholar
  12. Kameyama, A.: The Thurston equivalence for postcritically finite branched coverings. Osaka J. Math. 38(3), 565–610 (2001)MathSciNetzbMATHGoogle Scholar
  13. Kelsey, G., Lodge, R.: Quadratic Thurston maps with few postcritical points. Geom. Dedic. (2018).  https://doi.org/10.1007/s10711-018-0387-5 CrossRefzbMATHGoogle Scholar
  14. Koch, S., Pilgrim, K., Selinger, N.: Pullback invariants of Thurston maps. Trans. Am. Math. Soc. 368(7), 4621–4655 (2016)MathSciNetCrossRefGoogle Scholar
  15. Lodge, R., Mikulich, Y., Schleicher, D.: A classification of postcritically finite Newton maps (2015). arXiv:1510.02771
  16. MacLane, S., Adkisson, V.W.: Extensions of Homeomorphisms on the Sphere. Lectures in Topology, University of Michigan Press, Ann Arbor, pp. 223–236 (1941)Google Scholar
  17. Milnor, J.: Cubic polynomial maps with periodic critical orbit I. In: Schleicher, D., Peters, A.K. (eds.) Complex Dynamics: Families and Friends, pp. 333–411 (2009)Google Scholar
  18. Nekrashevych, V.: Self-Similar Groups, Mathematical Surveys and Monographs, vol. 117. AMS (2005)Google Scholar
  19. Nekrashevych, V.: Combinatorics of polynomial iterations. In: Schleicher, D., Peters, A.K., Wellesley, M.A. (eds.) Complex Dynamics: Families and Friends, pp. 169–214 (2009)Google Scholar
  20. Pilgrim, K.: An algebraic formulation of Thurston’s combinatorial equivalence. Proc. Am. Math. Soc. 131(11), 3527–3534 (2003)MathSciNetCrossRefGoogle Scholar
  21. Poirier, A.: On Postcritically Finite Polynomials, Part 2: Hubbard Trees, Stony Brook IMS preprint 93/7 (1993). arXiv:math/9307235
  22. Poirier, A.: Hubbard trees. Fundam. Math. 208(3), 193–248 (2010)MathSciNetCrossRefGoogle Scholar
  23. Rees, M.: A partial description of the parameter space of rational maps of degree two: part 1. Acta Math. 168, 11–87 (1992)MathSciNetCrossRefGoogle Scholar
  24. Rees, M.: A fundamental domain for \(V_3\). Mém. Soc. Math. Fr. (N.S) 121 (2010)Google Scholar
  25. Wittner, B.: On the Bifurcation Loci of Rational Maps of Degree Two. PhD Thesis, Cornell University (1988)Google Scholar

Copyright information

© Institute for Mathematical Sciences (IMS), Stony Brook University, NY 2019

Authors and Affiliations

  1. 1.National Research University Higher School of EconomicsMoscowRussia
  2. 2.Scuola Normale SuperiorePisaItaly

Personalised recommendations