Advertisement

Avoiding the potentiality trap: thinking about the moral status of synthetic embryos

  • Monika PiotrowskaEmail author
Original Article

Abstract

Research ethics committees must sometimes deliberate about objects that do not fit nicely into any existing category. This is currently the case with the “gastruloid,” which is a self-assembling blob of cells that resembles a human embryo. The resemblance makes it tempting to group it with other members of that kind, and thus to ask whether gastruloids really are embryos. But fitting an ambiguous object into an existing category with well-worn pathways in research ethics, like the embryo, is only a temporary fix. The bigger problem is that we no longer know what an embryo is. We haven’t had a non-absurd definition of ‘embryo’ for several decades and without a well-defined comparison class, asking whether gastruloids belong to the morally relevant class of things we call embryos is to ask a question without an answer. What’s the alternative? A better approach needs to avoid what I’ll refer to as “the potentiality trap” and, instead, rely on the emergence of morally salient facts about gastruloids and other synthetic embryos.

Keywords

Embryo Biotechnology Potentiality Research ethics Stem cell research Synthetic embryo 

Notes

Acknowledgements

Thanks to Gunnar Babcock, Jake Earl, Insoo Hyun, P.D. Magnus and most of all to Matt Mosdell, for helpful discussion and feedback on earlier drafts.

References

  1. Aach, J., J. Lunshof, E. Iyer, and G. Church. 2017. Addressing the ethical issues raised by synthetic human entities with embryo-like features. eLife.  https://doi.org/10.7554/elife.20674.CrossRefGoogle Scholar
  2. Baertschi, B., and A. Mauron. 2010. Moral status revisited: The challenge of reversed potency. Bioethics 24 (2): 96–103.CrossRefGoogle Scholar
  3. Baylis, F., and T. Krah. 2009. The trouble with embryos. Science Studies 22: 31–54.Google Scholar
  4. Cameron, C., and R. Williamson. 2005. In the world of Dolly, when does a human embryo acquire respect? Journal of Medical Ethics 31: 215–220.CrossRefGoogle Scholar
  5. Campbell, K.H., J. McWhir, W.A. Ritchie, and I. Wilmut. 1996. Sheep cloned by nuclear transfer from a cultured cell line. Nature 380 (6569): 64–66.CrossRefGoogle Scholar
  6. Condic, M.L., P. Lee, and R.P. George. 2009. Ontological and ethical implications of direct nuclear reprogramming: Response to Magill and Neaves. Kennedy Institute of Ethics Journal 19 (1): 33–40.CrossRefGoogle Scholar
  7. Condic, M. 2014. Totipotency: What it is and what it is not. Stem Cells and Development 23 (8): 796–812.CrossRefGoogle Scholar
  8. Damjanov, I., and D. Solter. 1974. Experimental teratoma. In Current topics in pathology. Current topics in pathology (Ergebnisse der Pathologie), vol. 59, ed. E. Grundmann and W.H. Kirsten. Berlin: Springer.Google Scholar
  9. Deglincerti, A., G.F. Croft, L.N. Pietila, M. Zernicka-Goetz, E.D. Siggia, and A.H. Brivanlou. 2016. Self-organization of the in vitro attached human embryo. Nature, 533 (7602): 251. Retrieved from, http://link.galegroup.com/apps/doc/A463709146/AONE?u=albanyu&sid=AONE&xid=7b8dcdda.
  10. De Miguel Beriain, I. 2014. What is a human embryo? A new piece in the bioethics puzzle. Croatian Medical Journal 55 (6): 669–671.  https://doi.org/10.3325/cmj.2014.55.669.CrossRefGoogle Scholar
  11. De Miguel-Beriain, I. 2015. The ethics of stem cells revisited. Advanced Drug Delivery Reviews 82–83: 176–180.CrossRefGoogle Scholar
  12. Denker, H.W. 2014. Stem cell terminology and ‘synthetic’ embryos: A new debate on totipotency, omnipotency, and pluripotency and how it relates to recent experimental data. Cells Tissues Organs 199: 221–227.CrossRefGoogle Scholar
  13. Devolder, K., and J. Harris. 2007. The ambiguity of the embryo: Ethical inconsistency in the human embryonic stem cell debate. Metaphilosophy 38: 153–169.CrossRefGoogle Scholar
  14. Fagan, M.B. 2013. The stem cell uncertainty principle. Philosophy of Science 80: 945–957.CrossRefGoogle Scholar
  15. Fagan, M. 2017. Stem cell lineages: Between cell and organism. Philosophy, Theory, and Practice in Biology 9 (6): 1–23.Google Scholar
  16. Harman, E. 2003. The potentiality problem. Philosophical Studies 114: 173–198.CrossRefGoogle Scholar
  17. Harris, J. 1985. The value of life: An introduction to medical ethics. Boston: Routledge & Kegan Paul.Google Scholar
  18. Hurlbut, J.B., I. Hyun, A.D. Levine, R. Lovell-Badge, J.E. Lunshof, K.R.W. Matthews, et al. 2017. Revisiting the Warnock rule. Nature Biotechnology 35 (11): 1029–1042.CrossRefGoogle Scholar
  19. Hyun, Insoo, Wilkerson Amy, and Josephine Johnston. 2016. Embryology policy: Revisit the 14-day rule. Nature 533 (7602): 169–171.CrossRefGoogle Scholar
  20. Jarvis, G.E. 2016. Early embryo mortality in natural human reproduction: What the data say. F1000Research 5: 2765.CrossRefGoogle Scholar
  21. Magill, G. and W.B. Neaves. 2009. Ontological and ethical implications of direct nuclear reprogramming. Kennedy Institute of Ethics Journal 19 (1): 23–32. Johns Hopkins University Press. Retrieved March 24, 2018, from Project MUSE database.Google Scholar
  22. McGee, A. 2014. The potentiality of the embryo and the somatic cell. Metaphilosophy 45: 689–706.CrossRefGoogle Scholar
  23. Maienschein, J. 2002. What’s in a name: Embryos, clones, and stem cells. The American Journal of Bioethics 2 (1): 12–19.CrossRefGoogle Scholar
  24. Nuffield Council on Bioethics. 2017. Human embryo culture. London: Nuffield Council on Bioethics.Google Scholar
  25. Pera, M.F., G. de Wert, W. Dondorp, R. Lovell-Badge, C.L. Mummery, M. Munsie, and P.P. Tam. 2015. What if stem cells turn into embryos in a dish? Nature Methods 12 (10): 917–919.CrossRefGoogle Scholar
  26. Peters Jr., P.G. 2006. The ambiguous meaning of human conception. University of California. Davis Law Review 40: 199.Google Scholar
  27. Piciocchi, C., and L. Martinelli. 2016. The change of definitions in a multidisciplinary landscape: The case of human embryo and pre-embryo identification. Croatian Medical Journal 57 (5): 510–515.  https://doi.org/10.3325/cmj.2016.57.510.CrossRefGoogle Scholar
  28. Regalado, A. 2017. Artificial human embryos are coming and no one knows how to handle them. MIT Technology Review. https://www.technologyreview.com/s/608173/artificial-human-embryos-are-coming-and-no-one-knows-how-to-handle-them/.
  29. Rivron, N.C., J. Frias-Aldeguer, E.J. Vrij, J.C. Bolsset, J. Korving, J. Vivie, et al. 2018a. Blastocyst-like structures generated solely from stem cells. Nature 557 (7703): 106–111.CrossRefGoogle Scholar
  30. Rivron, N.C., M. Pera, J. Rossant, Arias A. Martinez, M. Zernicka-Goetz, J. Fu, et al. 2018b. Debate ethics of embryo models form stem cells. Nature 564 (7735): 183–185.CrossRefGoogle Scholar
  31. Sagan, A., and P. Singer. 2007. The moral status of stem cells. Metaphilosophy 38: 264–284.CrossRefGoogle Scholar
  32. Shahbazi, M.N., A. Jedrusik, S. Vuoristo, G. Recher, A. Hupalowska, V. Bolton, N.N.M. Fogarty, A. Campbell, L. Devito, D. Ilic, Y. Khalaf, K.K. Niakan, S. Fishel, and M. Zernicka-Goetz. 2016. Self-organisation of the human embryo in the absence of maternal tissues. Nature Cell Biology 18 (6): 700–708.  https://doi.org/10.1038/ncb3347.CrossRefGoogle Scholar
  33. Shahbazi, M.N., and M. Zernicka-Goetz. 2018. Deconstructing and reconstructing the mouse and human early embryo. Nature Cell Biology 20: 878–887.CrossRefGoogle Scholar
  34. Sherman, M.I., and D. Solter. 1975. Teratomas and differentiation. New York: Academic Press.Google Scholar
  35. Stanton, C., and J. Harris. 2005. The moral status of the embryo post-Dolly. Journal of Medical Ethics 31 (4): 221–225.  https://doi.org/10.1136/jme.2004.008086.CrossRefGoogle Scholar
  36. Stier, M., and B. Schoene-Seifert. 2013. The argument from potentiality in the embryo protection debate: Finally “depotentialized”? American Journal of Bioethics 13 (1): 19–27.CrossRefGoogle Scholar
  37. Takahashi, K., K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka. 2007. Induction of pluripotent stem cells form adult human fibroblasts by defined factors. Cell 131 (5): 861–872.CrossRefGoogle Scholar
  38. Testa, G., L. Borghese, J.A. Steinbeck, and O. Brustle. 2007. Breakdown of the potentiality principle and its impact on global stem cell research. Cell Stem Cell 1 (2): 153–156.CrossRefGoogle Scholar
  39. Thomson, J.A., J. Itskovitz-Eldor, S.S. Shapiro, M.A. Waknitz, J.J. Swiergiel, V.S. Marshall, and J.M. Jones. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282 (5391): 1145–1147.CrossRefGoogle Scholar
  40. Tooley, M. 1974. Abortion and Infanticide. In The rights and wrongs of abortion, ed. Marshall Cohen, Thomas Nagel, and Thomas Scanlon. Princeton: Princeton University Press.Google Scholar
  41. Warmflash, A., B. Sorre, F. Etoc, E.D. Siggia, and A.H. Brivanlou. 2014. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nature Methods 11 (8): 847–854.  https://doi.org/10.1038/nmeth.3016.CrossRefGoogle Scholar
  42. Xu, P.F., N. Houssin, K.F. Ferri-Lagneau, B. Thisse, and C. Thisse. 2014. Construction of a vertebrate embryo from two opposing morphogen gradients. Science 344: 87–89.CrossRefGoogle Scholar

Copyright information

© Monash University 2019

Authors and Affiliations

  1. 1.SUNY at AlbanyAlbanyUSA

Personalised recommendations