Advertisement

A study on fixed point theorems for a class of generalized nonexpansive mappings in Hadamard spaces

  • Aree Varatechakongka
  • Withun PhuengrattanaEmail author
Original Article
  • 23 Downloads

Abstract

In this paper, we study the class of mappings with \(B_{\gamma ,\mu }\) condition due to Patir et al. (Fixed Point Theory Appl 2018:19, 2018) in the setting of Hadamard spaces. We prove a demiclosedness principle for such mapping in Hadamard spaces. Furthermore, we also prove the \(\Delta \)-convergence of the sequence generated by the S-iteration process for finding fixed points of the class of mappings with \(B_{\gamma ,\mu }\) condition in Hadamard spaces. Our results extend some known results which appeared in the literature.

Keywords

\(\Delta \)-Convergence Demiclosed principle Quasi-nonexpansive mapping Hadamard spaces 

Mathematics Subject Classification

47H09 47H10 

Notes

References

  1. 1.
    Suzuki, T.: Fixed point theorems and convergence theorems for some generalized nonexpansive mappings. J. Math. Anal. Appl. 340, 1088–1095 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Dhompongsa, S., Inthakon, W., Kaewkhao, A.: Edelstein’s method and fixed point theorems for some generalized nonexpansive mappings. J. Math. Anal. Appl. 350, 12–17 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Nanjaras, B., Panyanak, B., Phuengrattana, W.: Fixed point theorems and convergence theorems for Suzuki-generalized nonexpansive mappings in CAT(0) spaces. Nonlinear Anal. Hybrid Syst. 4, 25–31 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cholamjiak, P., Abdou, A.A., Cho, Y.J.: Proximal point algorithms involving fixed points of nonexpansive mappings in CAT(0) spaces. Fixed Point Theory Appl. 2015, 227 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Suparatulatorn, R., Cholamjiak, P., Suantai, S.: On solving the minimization problem and the fixed-point problem for nonexpansive mappings in CAT(0) spaces. Optim. Methods Softw. 32, 182–192 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Falset, J.G., Fuster, E.L., Suzuki, T.: Fixed point theory for a class of generalised non-expansive mappings. J. Math. Anal. Appl. 375, 185–195 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Patir, B., Goswami, N., Mishra, V.N.: Some results on fixed point theory for a class of generalized nonexpansive mappings. Fixed Point Theory Appl. 2018, 19 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Karapinar, E.: Remarks on Suzuki (C)-condition. Department of Mathematics, Atilim University, Incek, Ankara (2011)Google Scholar
  9. 9.
    Karapinar, E., Tas, K.: Generalised (C)-conditions and related fixed point theorems. Comput. Math. Appl. 61, 3370–3380 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Phuengrattana, W.: Approximating fixed points of Suzuki-generalized nonexpansive mappings. Nonlinear Anal. Hybrid Syst. 5, 583–590 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bridson, M., Haefliger, A.: Metric Spaces of Non-Positive Curvature. Springer, Berlin (1999)CrossRefGoogle Scholar
  12. 12.
    Dhompongsa, S., Panyanak, B.: On \(\Delta \)-convergence theorems in CAT(0) spaces. Comput. Math. Appl. 56, 2572–2579 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)zbMATHGoogle Scholar
  14. 14.
    Kohlenbach, U.: Some logical metatheorems with applications in functional analysis. Trans. Am. Math. Soc. 357, 89–128 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Tits, J.: A Theorem of Lie–Kolchin for Trees, Contributions to Algebra: A Collection of Papers Dedicated to Ellis Kolchin. Academic Press, New York (1977)zbMATHGoogle Scholar
  16. 16.
    Kirk, W.A.: Geodesic geometry and fixed point theory. In: Seminar of Mathematical Analysis, Malaga/Seville, 2002/2003. Coleccion Abierta, vol. 64, pp. 195–225. Universidad de Sevilla Secr. Publ., Seville (2003)Google Scholar
  17. 17.
    Reich, S., Salinas, Z.: Weak convergence of infinite products of operators in Hadamard spaces. Rend. Circ. Mat. Palermo 65, 55–71 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Reich, S., Shafrir, I.: Nonexpansive iterations in hyperbolic spaces. Nonlinear Anal. 15, 537–558 (1990)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Phuengrattana, W., Suantai, S.: Fixed point theorems for a semigroup of generalized asymptotically nonexpansive mappings in CAT(0) spaces. Fixed Point Theory Appl. 2012, 230 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Phuengrattana, W., Suantai, S.: Existence theorems for generalized asymptotically nonexpansive mappings in uniformly convex metric spaces. J. Convex Anal. 20, 753–761 (2013)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Bačák, M., Reich, S.: The asymptotic behavior of a class of nonlinear semigroups in Hadamard spaces. J. Fixed Point Theory Appl. 16, 189–202 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Reich, S., Salinas, Z.: Metric convergence of infinite products of operators in Hadamard spaces. J. Nonlinear Convex Anal. 18, 331–345 (2017)MathSciNetGoogle Scholar
  23. 23.
    Dhompongsa, S., Kirk, W.A., Sims, B.: Fixed points of uniformly Lipschitzian mappings. Nonlinear Anal. 65, 762–772 (2006)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kirk, W.A., Panyanak, B.: A concept of convergence in geodesic spaces. Nonlinear Anal. 68, 3689–3696 (2008)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Dhompongsa, S., Kirk, W.A., Panyanak, B.: Nonexpansive set-valued mappings in metric and Banach spaces. J. Nonlinear Convex Anal. 8, 35–45 (2007)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Laokul, T., Panyanak, B.: Approximating fixed points of nonexpansive mappings in CAT(0) spaces. Int. J. Math. Anal. 3, 1305–1315 (2009)MathSciNetzbMATHGoogle Scholar

Copyright information

© Sociedad Matemática Mexicana 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Science and TechnologyNakhon Pathom Rajabhat UniversityNakhonThailand

Personalised recommendations