Advertisement

Decay rate and blow up solutions for coupled quasilinear system

  • Nadia MezouarEmail author
  • Erhan PİŞKİN
Original Article
  • 14 Downloads

Abstract

We consider the initial value problem for a coupled quasilinear system in a bounded domain with dispersion, nonlinear damping and source terms. We give decay estimate of energy function by means Nakao’s inequality. Furthermore, under some conditions on the given parameters, we study blow up of solutions for a negative initial energy.

Keywords

Coupled quasilinear system Global existence Decay rate Blow up 

Mathematics Subject Classification

35A01 35L57 35B40 

Notes

References

  1. 1.
    Alves, C.O., Cavalcanti, M.M., Domingos Cavalcanti, V.N., Rammaha, M.A., Toundykov, D.: On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms. Discrete Contin. Dyn. Syst. Ser. S. 2(3), 583–608 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Agre, K., Rammaha, M.A.: Systems of nonlinear wave equations with damping and source terms. Differ. Integral Equ. 19(11), 1235–1270 (2006)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Barbu, V., Lasiecka, I., Rammaha, M.A.: On nonlinear wave equations with degenerate damping and source terms. Trans. Am. Math. Soc. 357, 2571–2611 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cavalcanti, M.M., Domingos Cavalcanti, V.N., Lasiecka, I., Webler, C.M.: Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density. Adv. Nonlinear Anal 6(2), 121–145 (2017)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Cavalcanti, M.M., Domingos Cavalcanti, V.N., Soriano, J.A.: Exponential decay for the soution of semilinear viscoelastic wave equations with localised damping. Electron. J. Differ. Equ. 2002, 1–14 (2002)zbMATHGoogle Scholar
  6. 6.
    Cavalcanti, M.M., Domingos Cavalcanti, V.N., Ferreira, J.: Existence and uniform decay for a nonlinear viscoelastic equation with strong damping. Math. Methods Appl. Sci. 24, 1043–1053 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Georgiev, V., Todorova, G.: Existence of a solution of the wave equation with nonlinear damping and source terms. J. Differ. Equ. 109, 295–308 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hao, J., Zhang, Y., Li, S.: Global existence and blow up phenomene for a nonlinear wave equation. Nonlinear Anal. 71, 4823–4832 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Liu, W.J.: General decay and blow up of solution for a quasilinear viscoelastic problem with nonlinear source terms. Nonlinear Anal TMA. 73, 1890–1904 (2010)CrossRefzbMATHGoogle Scholar
  10. 10.
    Messaoudi, S.A.: Blow up and global existence in a nonlinear viscoelastic wave equation. Math. Nachr. 260, 58–66 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Messaoudi, S.A.: On the decay of solutions for a class of quasilinear hyperbolic equations with nonlinear damping and source terms. Math. Methods Appl. Sci. 28, 1819–1828 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Messaoudi, S.A., Tatar, N.E.: Global existence and uniform stability of solutions for a quasilinear viscoelastic problem. Math. Methods Appl. Sci. 30, 665–680 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Nakao, M.: Asymptotic stability of the bounded or almost periodic solution of thewave equation with nonlinear dissipation term. J. Math. Anal. Appl. 58(2), 336–343 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Pişkin, E.: On the decay and blow up of solutions for a quasilinear hyperbolic equations with nonlinear damping and source terms. Bound. Value Probl. 37, 1–14 (2015)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Pişkin, E., Polat, N.: Global existence, decay and blow up solution for coupled nonlinear wave equations with damping and source terms. Turk. J. Math. 37, 633–651 (2013)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Song, H.T.: Global nonexistence of positive initial energy solutions for viscoelastic wave equation. Nonlinear Anal. TMA 125, 260–269 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    wu, Y., Xue, X.: Uniform decay rate stimates for a class of quasilinear hyperbolic equations with nonlinear damping and source terms. Appl. Anal. 92(6), 1169–1178 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Zhang, X., Chai, S., Wu, J.: Global nonexistence of positive initial energy solution for coupled quasilinear system. Math. Methods Appl. Sci. 40(15), 5411–5418 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Sociedad Matemática Mexicana 2019

Authors and Affiliations

  1. 1.Faculty of Sciences EconomicsMustapha Stambouli UniversityMascaraAlgeria
  2. 2.Laboratory of Analysis and Control of Partial Differential EquationsDjillali Liabes UniversitySidi Bel AbbèsAlgeria
  3. 3.Department of MathematicsDicle UniversityDiyarbakirTurkey

Personalised recommendations