Boletín de la Sociedad Matemática Mexicana

, Volume 24, Issue 2, pp 343–357 | Cite as

Models for classifying spaces for \({\mathbb {Z}\rtimes \mathbb {Z}}\)

  • Daniel Juan-Pineda
  • Alejandra Trujillo-NegreteEmail author
Original Article


We construct two models for the classifying space for the family of infinite cyclic subgroups of the fundamental group of the Klein bottle. These examples do not fit in general constructions previously done, for example, for hyperbolic groups.

Mathematics Subject Classification

20F65 55R35 


  1. 1.
    Farley, D.: Constructions of \(E_{\cal{VC}}\) and \(E_{\cal{FBC}}\) for groups acting on CAT(0) spaces. Algebr. Geom. Topol. 10(4), 2229–2250 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Fomenko, A., Fuchs, D.: Homotopical topology. Graduate Texts in Mathematics, Second edn. Springer, Berlin (2016)Google Scholar
  3. 3.
    Juan-Pineda, D., Leary, I.J.: On classifying spaces for the family of virtually cyclic subgroups, in Recent developments in algebraic topology. Contemp. Math. 407, 135–145 (2001)CrossRefGoogle Scholar
  4. 4.
    Lück, W.: Survey on classifying spaces for families of subgroups. Infinite Groups: Geometric, Combinatorial and Dynamical Aspects, vol. 248 of Progr. Math., pp. 269–322. Birkhäuser, Basel (2005)CrossRefGoogle Scholar
  5. 5.
    Lück, W., Weiermann, M.: On the classifying space of the family of virtually cyclic subgroups. Pure Appl Math Q 8(2), 497–555 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Milnor, J.: Construction of Universal Bundles. I. Ann. Math. 63(2), 272–284 (1956)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Munkres, J.R.: Elements of Algebraic Topology. Perseus Books Pub, New York (1993)zbMATHGoogle Scholar

Copyright information

© Sociedad Matemática Mexicana 2017

Authors and Affiliations

  1. 1.Centro de Ciencias Matemáticas., UNAM Campus MoreliaMoreliaMexico

Personalised recommendations