Advertisement

Current Clinical Microbiology Reports

, Volume 6, Issue 1, pp 1–9 | Cite as

Beyond the NEC: Modulation of Herpes Simplex Virus Nuclear Egress by Viral and Cellular Components

  • Bruce W. BanfieldEmail author
Virology (A Nicola, Section Editor)
  • 54 Downloads
Part of the following topical collections:
  1. Topical Collection on Virology

Abstract

Purpose of Review

Herpesvirus virions are complex molecular machines that, like most viruses, must be stable in the extracellular environment yet disassemble readily upon receipt of the appropriate molecular cues. While we have learned much about the assembly and composition of these fascinating particles, many central questions remain unanswered.

Recent Findings

This review focuses on an early stage in herpesvirus assembly called nuclear egress whereby viral DNA genomes packaged within an icosahedral protein capsid are translocated from the nucleoplasm across both the inner and outer nuclear membranes to reach the cytoplasm where the final stages of virion maturation take place.

Summary

Here, I provide an overview of our current understanding of herpes simplex virus nuclear egress, the hurdles that the virus must overcome during nuclear egress, and discuss the literature pointing to the regulation and facilitation of this process by viral and cellular components.

Keywords

Herpes simplex virus Virion assembly Nuclear egress 

Notes

Acknowledgements

I thank Jie Gao for the helpful discussions and Renée Finnen for the helpful discussions and critical reading of the manuscript. Work in our laboratory is supported by the Canadian Institutes of Health Research operating grant 93804, Natural Sciences and Engineering Research Council of Canada Discovery grant 418719, and Canada Foundation for Innovation award 16389. I apologize to my many colleagues whose work could not be cited because of length restrictions.

Compliance with Ethical Standards

Conflict of Interest

The author declares that he has no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Pellet, P., Roizman, B. Herpesviridae: A Brief Introduction, in Fields Virology, Edn. 5th Edition. (ed. P. Howley) 2480–2499 (Lippincott, Philadelphia; 2007).Google Scholar
  2. 2.
    Zarrouk K, Piret J, Boivin G. Herpesvirus DNA polymerases: structures, functions and inhibitors. Virus Res. 2017;234:177–92.CrossRefGoogle Scholar
  3. 3.
    Warren-Gash C, Forbes H, Breuer J. Varicella and herpes zoster vaccine development: lessons learned. Expert Rev Vaccines. 2017;16:1191–201.CrossRefGoogle Scholar
  4. 4.
    Cunningham AL. The herpes zoster subunit vaccine. Expert Opin Biol Ther. 2016;16:265–71.CrossRefGoogle Scholar
  5. 5.
    Loret S, Guay G, Lippe R. Comprehensive characterization of extracellular herpes simplex virus type 1 virions. J Virol. 2008;82:8605–18.CrossRefGoogle Scholar
  6. 6.
    Heming JD, Conway JF, Homa FL. Herpesvirus capsid assembly and DNA packaging. Adv Anat Embryol Cell Biol. 2017;223:119–42.CrossRefGoogle Scholar
  7. 7.
    Newcomb WW, Homa FL, Thomsen DR, Booy FP, Trus BL, Steven AC, et al. Assembly of the herpes simplex virus capsid: characterization of intermediates observed during cell-free capsid formation. J Mol Biol. 1996;263:432–46.CrossRefGoogle Scholar
  8. 8.
    Trus BL, Booy FP, Newcomb WW, Brown JC, Homa FL, Thomsen DR, et al. The herpes simplex virus procapsid: structure, conformational changes upon maturation, and roles of the triplex proteins VP19c and VP23 in assembly. J Mol Biol. 1996;263:447–62.CrossRefGoogle Scholar
  9. 9.
    Gibson W, Roizman B. Proteins specified by herpes simplex virus. 8. Characterization and composition of multiple capsid forms of subtypes 1 and 2. J Virol. 1972;10:1044–52.Google Scholar
  10. 10.
    Roizman B, Furlong D. The replication of herpesviruses. In: Fraenkel-Conrat H, Wager RR, editors. Comprehensive virology, vol. 3. New York: Plenum Press; 1974. p. 229–403.Google Scholar
  11. 11.
    Hollinshead M, Johns HL, Sayers CL, Gonzalez-Lopez C, Smith GL, Elliott G. Endocytic tubules regulated by Rab GTPases 5 and 11 are used for envelopment of herpes simplex virus. EMBO J. 2012;31:4204–20.CrossRefGoogle Scholar
  12. 12.
    Turcotte S, Letellier J, Lippé R. Herpes simplex virus type 1 capsids transit by the trans-golgi network, Where Viral Glycoproteins Accumulate Independently of Capsid Egress. Journal of Virology. 2005;79:8847–60.CrossRefGoogle Scholar
  13. 13.
    Mettenleiter TC. Breaching the barrier—the nuclear envelope in virus infection. J Mol Biol. 2016;428:1949–61.CrossRefGoogle Scholar
  14. 14.
    Bigalke JM, Heldwein EE. Have NEC coat, Will Travel: Structural Basis of Membrane Budding During Nuclear Egress in Herpesviruses. Adv Virus Res. 2017;97:107–41.CrossRefGoogle Scholar
  15. 15.
    Reynolds AE, Ryckman BJ, Baines JD, Zhou Y, Liang L, Roller RJ. U(L)31 and U(L)34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids. J Virol. 2001;75:8803–17.CrossRefGoogle Scholar
  16. 16.
    Reynolds AE, Wills EG, Roller RJ, Ryckman BJ, Baines JD. Ultrastructural localization of the herpes simplex virus type 1 UL31, UL34, and US3 proteins suggests specific roles in primary envelopment and egress of nucleocapsids. J Virol. 2002;76:8939–52.CrossRefGoogle Scholar
  17. 17.
    Chang YE, Van Sant C, Krug PW, Sears AE, Roizman B. The null mutant of the U(L)31 gene of herpes simplex virus 1: construction and phenotype in infected cells. J Virol. 1997;71:8307–15.Google Scholar
  18. 18.
    Roller RJ, Zhou Y, Schnetzer R, Ferguson J, DeSalvo D. Herpes simplex virus type 1 U(L)34 gene product is required for viral envelopment. J Virol. 2000;74:117–29.CrossRefGoogle Scholar
  19. 19.
    Klupp BG, Granzow H, Fuchs W, Keil GM, Finke S, Mettenleiter TC. Vesicle formation from the nuclear membrane is induced by coexpression of two conserved herpesvirus proteins. Proc Natl Acad Sci U S A. 2007;104:7241–6.CrossRefGoogle Scholar
  20. 20.
    Bigalke JM, Heuser T, Nicastro D, Heldwein EE. Membrane deformation and scission by the HSV-1 nuclear egress complex. Nat Commun. 2014;5:4131.CrossRefGoogle Scholar
  21. 21.
    Lorenz M, Vollmer B, Unsay JD, Klupp BG, García-Sáez AJ, Mettenleiter TC, et al. A single herpesvirus protein can mediate vesicle formation in the nuclear envelope. J Biol Chem. 2015;290:6962–74.CrossRefGoogle Scholar
  22. 22.
    Bigalke JM, Heldwein EE. Structural basis of membrane budding by the nuclear egress complex of herpesviruses. EMBO J. 2015;34:2921–36.CrossRefGoogle Scholar
  23. 23.
    Leigh KE, Sharma M, Mansueto MS, Boeszoermenyi A, Filman DJ, Hogle JM, et al. Structure of a herpesvirus nuclear egress complex subunit reveals an interaction groove that is essential for viral replication. Proc Natl Acad Sci U S A. 2015;112:9010–5.CrossRefGoogle Scholar
  24. 24.
    Lye MF, Sharma M, el Omari K, Filman DJ, Schuermann JP, Hogle JM, et al. Unexpected features and mechanism of heterodimer formation of a herpesvirus nuclear egress complex. EMBO J. 2015;34:2937–52.CrossRefGoogle Scholar
  25. 25.
    Walzer SA, Egerer-Sieber C, Sticht H, Sevvana M, Hohl K, Milbradt J, et al. Crystal structure of the human cytomegalovirus pUL50-pUL53 core nuclear egress complex provides insight into a unique assembly scaffold for virus-host protein interactions. J Biol Chem. 2015;290:27452–8.CrossRefGoogle Scholar
  26. 26.
    Zeev-Ben-Mordehai T, Weberruß M, Lorenz M, Cheleski J, Hellberg T, Whittle C, et al. Crystal structure of the herpesvirus nuclear egress complex provides insights into inner nuclear membrane remodeling. Cell Rep. 2015;13:2645–52.CrossRefGoogle Scholar
  27. 27.
    Hagen C, Dent KC, Zeev-Ben-Mordehai T, Grange M, Bosse JB, Whittle C, et al. Structural basis of vesicle formation at the inner nuclear membrane. Cell. 2015;163:1692–701.CrossRefGoogle Scholar
  28. 28.
    Lye MF, Wilkie AR, Filman DJ, Hogle JM, Coen DM. Getting to and through the inner nuclear membrane during herpesvirus nuclear egress. Curr Opin Cell Biol. 2017;46:9–16.CrossRefGoogle Scholar
  29. 29.
    Bailer, S.M. Venture from the interior-herpesvirus pUL31 escorts capsids from nucleoplasmic replication compartments to sites of primary envelopment at the inner nuclear membrane. Cells 2017;6(4):46.Google Scholar
  30. 30.
    Feierbach B, Piccinotti S, Bisher M, Denk W, Enquist LW. Alpha-herpesvirus infection induces the formation of nuclear actin filaments. PLoS Pathog. 2006;2:e85.CrossRefGoogle Scholar
  31. 31.
    Forest T, Barnard S, Baines JD. Active intranuclear movement of herpesvirus capsids. Nat Cell Biol. 2005;7:429–31.CrossRefGoogle Scholar
  32. 32.
    Bosse JB, Hogue IB, Feric M, Thiberge SY, Sodeik B, Brangwynne CP, et al. Remodeling nuclear architecture allows efficient transport of herpesvirus capsids by diffusion. Proc Natl Acad Sci U S A. 2015;112:E5725–33.CrossRefGoogle Scholar
  33. 33.
    Bosse JB, et al. Nuclear herpesvirus capsid motility is not dependent on F-actin. MBio. 2014;5:e01909–14.CrossRefGoogle Scholar
  34. 34.
    Wilkie, A.R., Lawler, J.L. & Coen, D.M. A Role for nuclear F-actin induction in human cytomegalovirus nuclear egress. MBio 2016;7:e01254–16.Google Scholar
  35. 35.
    Wilkie, A.R. et al. A role for myosin Va in human cytomegalovirus nuclear egress. J Virol 2018;92:e01849–17.Google Scholar
  36. 36.
    Simpson-Holley M, Baines J, Roller R, Knipe DM. Herpes simplex virus 1 U(L)31 and U(L)34 gene products promote the late maturation of viral replication compartments to the nuclear periphery. J Virol. 2004;78:5591–600.CrossRefGoogle Scholar
  37. 37.
    Simpson-Holley M, Colgrove RC, Nalepa G, Harper JW, Knipe DM. Identification and functional evaluation of cellular and viral factors involved in the alteration of nuclear architecture during herpes simplex virus 1 infection. J Virol. 2005;79:12840–51.CrossRefGoogle Scholar
  38. 38.
    Gao, J., Hay, T.J.M. & Banfield, B.W. The product of the herpes simplex virus 2 UL16 gene is critical for the egress of capsids from the nuclei of infected cells. J Virol 2017;91:e00350–17.Google Scholar
  39. 39.
    • Gao, J., Yan, X. & Banfield, B.W. Comparative analysis of UL16 mutants derived from multiple strains of herpes simplex virus 2 (HSV-2) and HSV-1 reveals species-specific requirements for the UL16 protein. J Virol 2018;92:e00629–18. This study provides evidence that the viral components required for nuclear egress differ bewteen HSV-1 and HSV-2. Google Scholar
  40. 40.
    Burke B, Stewart CL. The nuclear lamins: flexibility in function. Nat Rev Mol Cell Biol. 2013;14:13–24.CrossRefGoogle Scholar
  41. 41.
    • Vu A, Poyzer C, Roller R. Extragenic suppression of a mutation in herpes simplex virus 1 UL34 that affects lamina disruption and nuclear egress. J Virol. 2016;90:10738–51 This study brings into the question the importance of overt disruptions of the nuclear lamina in the nuclear egress of HSV-1.CrossRefGoogle Scholar
  42. 42.
    Myllys M, Ruokolainen V, Aho V, Smith EA, Hakanen S, Peri P, et al. Herpes simplex virus 1 induces egress channels through marginalized host chromatin. Sci Rep. 2016;6:28844.CrossRefGoogle Scholar
  43. 43.
    Aho V, Myllys M, Ruokolainen V, Hakanen S, Mäntylä E, Virtanen J, et al. Chromatin organization regulates viral egress dynamics. Sci Rep. 2017;7:3692.CrossRefGoogle Scholar
  44. 44.
    Buser C, Walther P, Mertens T, Michel D. Cytomegalovirus primary envelopment occurs at large infoldings of the inner nuclear membrane. J Virol. 2007;81:3042–8.CrossRefGoogle Scholar
  45. 45.
    Villinger C, Neusser G, Kranz C, Walther P, Mertens T. 3D analysis of HCMV induced-nuclear membrane structures by FIB/SEM tomography: insight into an unprecedented membrane morphology. Viruses. 2015;7:5686–704.CrossRefGoogle Scholar
  46. 46.
    Malhas A, Goulbourne C, Vaux DJ. The nucleoplasmic reticulum: form and function. Trends Cell Biol. 2011;21:362–73.CrossRefGoogle Scholar
  47. 47.
    Zhang J, Nagel CH, Sodeik B, Lippe R. Early, active, and specific localization of herpes simplex virus type 1 gM to nuclear membranes. J Virol. 2009;83:12984–97.CrossRefGoogle Scholar
  48. 48.
    Ryckman BJ, Roller RJ. Herpes simplex virus type 1 primary envelopment: UL34 protein modification and the US3-UL34 catalytic relationship. J Virol. 2004;78:399–412.CrossRefGoogle Scholar
  49. 49.
    Wagenaar F, Pol JMA, Peeters B, Gielkens ALJ, de Wind N, Kimman TG. The US3-encoded protein kinase from pseudorabies virus affects egress of virions from the nucleus. J Gen Virol. 1995;76(Pt 7):1851–9.CrossRefGoogle Scholar
  50. 50.
    Trus BL, Newcomb WW, Cheng N, Cardone G, Marekov L, Homa FL, et al. Allosteric signaling and a nuclear exit strategy: binding of UL25/UL17 heterodimers to DNA-filled HSV-1 capsids. Mol Cell. 2007;26:479–89.CrossRefGoogle Scholar
  51. 51.
    Dai, X. & Zhou, Z.H. Structure of the herpes simplex virus 1 capsid with associated tegument protein complexes. Science 2018;360:eaao7298.Google Scholar
  52. 52.
    Fan WH, Roberts APE, McElwee M, Bhella D, Rixon FJ, Lauder R. The large tegument protein pUL36 is essential for formation of the capsid vertex-specific component at the capsid-tegument interface of herpes simplex virus 1. J Virol. 2015;89:1502–11.CrossRefGoogle Scholar
  53. 53.
    Huet A, Makhov AM, Huffman JB, Vos M, Homa FL, Conway JF. Extensive subunit contacts underpin herpesvirus capsid stability and interior-to-exterior allostery. Nat Struct Mol Biol. 2016;23:531–9.CrossRefGoogle Scholar
  54. 54.
    Cockrell SK, Huffman JB, Toropova K, Conway JF, Homa FL. Residues of the UL25 protein of herpes simplex virus that are required for its stable interaction with capsids. J Virol. 2011;85:4875–87.CrossRefGoogle Scholar
  55. 55.
    Toropova K, Huffman JB, Homa FL, Conway JF. The herpes simplex virus 1 UL17 protein is the second constituent of the capsid vertex-specific component required for DNA packaging and retention. J Virol. 2011;85:7513–22.CrossRefGoogle Scholar
  56. 56.
    Dai X, Gong D, Wu TT, Sun R, Zhou ZH. Organization of capsid-associated tegument components in Kaposi’s sarcoma-associated herpesvirus. J Virol. 2014;88:12694–702.CrossRefGoogle Scholar
  57. 57.
    Leelawong M, Guo D, Smith GA. A physical link between the pseudorabies virus capsid and the nuclear egress complex. J Virol. 2011;85:11675–84.CrossRefGoogle Scholar
  58. 58.
    Yang K, Baines JD. Selection of HSV capsids for envelopment involves interaction between capsid surface components pUL31, pUL17, and pUL25. Proc Natl Acad Sci U S A. 2011;108:14276–81.CrossRefGoogle Scholar
  59. 59.
    Yang K, Wills E, Lim HY, Zhou ZH, Baines JD. Association of herpes simplex virus pUL31 with capsid vertices and components of the capsid vertex-specific complex. J Virol. 2014;88:3815–25.CrossRefGoogle Scholar
  60. 60.
    Mou F, Wills E, Baines JD. Phosphorylation of the U(L)31 protein of herpes simplex virus 1 by the U(S)3-encoded kinase regulates localization of the nuclear envelopment complex and egress of nucleocapsids. J Virol. 2009;83:5181–91.CrossRefGoogle Scholar
  61. 61.
    Funk C, Ott M, Raschbichler V, Nagel CH, Binz A, Sodeik B, et al. The herpes simplex virus protein pUL31 escorts nucleocapsids to sites of nuclear egress, a process coordinated by its N-terminal domain. PLoS Pathog. 2015;11:e1004957.CrossRefGoogle Scholar
  62. 62.
    Schmid MF, Hecksel CW, Rochat RH, Bhella D, Chiu W, Rixon FJ. A tail-like assembly at the portal vertex in intact herpes simplex type-1 virions. PLoS Pathog. 2012;8:e1002961.CrossRefGoogle Scholar
  63. 63.
    •• McElwee M, Vijayakrishnan S, Rixon F, Bhella D. Structure of the herpes simplex virus portal-vertex. PLoS Biol. 2018;16:e2006191 This study provides the first high resolution view of the HSV-1 portal vertex associated tegument.CrossRefGoogle Scholar
  64. 64.
    Fossum E, Friedel CC, Rajagopala SV, Titz B, Baiker A, Schmidt T, et al. Evolutionarily conserved herpesviral protein interaction networks. PLoS Pathog. 2009;5:e1000570.CrossRefGoogle Scholar
  65. 65.
    Baines JD, Cunningham C, Nalwanga D, Davison A. The U(L)15 gene of herpes simplex virus type 1 contains within its second exon a novel open reading frame that is translated in frame with the U(L)15 gene product. J Virol. 1997;71:2666–73.Google Scholar
  66. 66.
    Kharkwal H, Smith CG, Wilson DW. Herpes simplex virus capsid localization to ESCRT-VPS4 complexes in the presence and absence of the large tegument protein UL36p. J Virol. 2016;90:7257–67.CrossRefGoogle Scholar
  67. 67.
    Tengelsen LA, Pederson NE, Shaver PR, Wathen MW, Homa FL. Herpes simplex virus type 1 DNA cleavage and encapsidation require the product of the UL28 gene: isolation and characterization of two UL28 deletion mutants. J Virol. 1993;67:3470–80.Google Scholar
  68. 68.
    Sarfo, A. et al. The UL21 Tegument Protein of Herpes Simplex Virus 1 Is Differentially Required for the Syncytial Phenotype. J Virol 2017;91:e01161–17.Google Scholar
  69. 69.
    Finnen, R., Banfield, BW . Unpublished observations. (2018).Google Scholar
  70. 70.
    Addison C, Rixon FJ, Palfreyman JW, O'Hara M, Preston VG. Characterisation of a herpes simplex virus type 1 mutant which has a temperature-sensitive defect in penetration of cells and assembly of capsids. Virology. 1984;138:246–59.CrossRefGoogle Scholar
  71. 71.
    Klupp BG, Granzow H, Keil GM, Mettenleiter TC. The capsid-associated UL25 protein of the alphaherpesvirus pseudorabies virus is nonessential for cleavage and encapsidation of genomic DNA but is required for nuclear egress of capsids. J Virol. 2006;80:6235–46.CrossRefGoogle Scholar
  72. 72.
    McNab AR, et al. The product of the herpes simplex virus type 1 UL25 gene is required for encapsidation but not for cleavage of replicated viral DNA. J Virol. 1998;72:1060–70.Google Scholar
  73. 73.
    O'Hara M, Rixon FJ, Stow ND, Murray J, Murphy M, Preston VG. Mutational analysis of the herpes simplex virus type 1 UL25 DNA packaging protein reveals regions that are important after the viral DNA has been packaged. J Virol. 2010;84:4252–63.CrossRefGoogle Scholar
  74. 74.
    Maruzuru Y, Shindo K, Liu Z, Oyama M, Kozuka-Hata H, Arii J, et al. Role of herpes simplex virus 1 immediate early protein ICP22 in viral nuclear egress. J Virol. 2014;88:7445–54.CrossRefGoogle Scholar
  75. 75.
    Liu Z, Kato A, Shindo K, Noda T, Sagara H, Kawaoka Y, et al. Herpes simplex virus 1 UL47 interacts with viral nuclear egress factors UL31, UL34, and Us3 and regulates viral nuclear egress. J Virol. 2014;88:4657–67.CrossRefGoogle Scholar
  76. 76.
    Farnsworth A, Wisner TW, Webb M, Roller R, Cohen G, Eisenberg R, et al. Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane. Proc Natl Acad Sci U S A. 2007;104:10187–92.CrossRefGoogle Scholar
  77. 77.
    Kato A, Arii J, Shiratori I, Akashi H, Arase H, Kawaguchi Y. Herpes simplex virus 1 protein kinase Us3 phosphorylates viral envelope glycoprotein B and regulates its expression on the cell surface. J Virol. 2009;83:250–61.CrossRefGoogle Scholar
  78. 78.
    Wisner TW, Wright CC, Kato A, Kawaguchi Y, Mou F, Baines JD, et al. Herpesvirus gB-induced fusion between the virion envelope and outer nuclear membrane during virus egress is regulated by the viral US3 kinase. J Virol. 2009;83:3115–26.CrossRefGoogle Scholar
  79. 79.
    Morimoto T, Arii J, Tanaka M, Sata T, Akashi H, Yamada M, et al. Differences in the regulatory and functional effects of the Us3 protein kinase activities of herpes simplex virus 1 and 2. J Virol. 2009;83:11624–34.CrossRefGoogle Scholar
  80. 80.
    Klupp B, Altenschmidt J, Granzow H, Fuchs W, Mettenleiter TC. Glycoproteins required for entry are not necessary for egress of pseudorabies virus. J Virol. 2008;82:6299–309.CrossRefGoogle Scholar
  81. 81.
    Hirohata Y, Arii J, Liu Z, Shindo K, Oyama M, Kozuka-Hata H, et al. Herpes simplex virus 1 recruits CD98 heavy chain and beta1 integrin to the nuclear membrane for viral de-envelopment. J Virol. 2015;89:7799–812.Google Scholar
  82. 82.
    Ito Y, et al. Fusion regulation proteins on the cell surface: isolation and characterization of monoclonal antibodies which enhance giant polykaryocyte formation in Newcastle disease virus-infected cell lines of human origin. J Virol. 1992;66:5999–6007.Google Scholar
  83. 83.
    Ohgimoto S, et al. Molecular characterization of fusion regulatory protein-1 (FRP-1) that induces multinucleated giant cell formation of monocytes and HIV gp160-mediated cell fusion. FRP-1 and 4F2/CD98 are identical molecules. J Immunol. 1995;155:3585–92.Google Scholar
  84. 84.
    Ohta H, Tsurudome M, Matsumura H, Koga Y, Morikawa S, Kawano M, et al. Molecular and biological characterization of fusion regulatory proteins (FRPs): anti-FRP mAbs induced HIV-mediated cell fusion via an integrin system. EMBO J. 1994;13:2044–55.CrossRefGoogle Scholar
  85. 85.
    Okamoto K, et al. An anti-fusion regulatory protein-1 monoclonal antibody suppresses human parainfluenza virus type 2-induced cell fusion. J Gen Virol. 1997;78(Pt 1):83–9.CrossRefGoogle Scholar
  86. 86.
    Liu Z, Kato A, Oyama M, Kozuka-Hata H, Arii J, Kawaguchi Y. Role of host cell p32 in herpes simplex virus 1 De-envelopment during viral nuclear egress. J Virol. 2015;89:8982–98.CrossRefGoogle Scholar
  87. 87.
    Mossman KL, Sherburne R, Lavery C, Duncan J, Smiley JR. Evidence that herpes simplex virus VP16 is required for viral egress downstream of the initial envelopment event. J Virol. 2000;74:6287–99.CrossRefGoogle Scholar
  88. 88.
    Baines JD, Ward PL, Campadelli-Fiume G, Roizman B. The UL20 gene of herpes simplex virus 1 encodes a function necessary for viral egress. J Virol. 1991;65:6414–24.Google Scholar
  89. 89.
    Nozawa N, Kawaguchi Y, Tanaka M, Kato A, Kato A, Kimura H, et al. Herpes simplex virus type 1 UL51 protein is involved in maturation and egress of virus particles. J Virol. 2005;79:6947–56.CrossRefGoogle Scholar
  90. 90.
    Mekhail K, Moazed D. The nuclear envelope in genome organization, expression and stability. Nat Rev Mol Cell Biol. 2010;11:317–28.CrossRefGoogle Scholar
  91. 91.
    Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, Burke B, et al. Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol. 2006;172:41–53.CrossRefGoogle Scholar
  92. 92.
    Buchkovich NJ, Maguire TG, Alwine JC. Role of the endoplasmic reticulum chaperone BiP, SUN domain proteins, and dynein in altering nuclear morphology during human cytomegalovirus infection. J Virol. 2010;84:7005–17.CrossRefGoogle Scholar
  93. 93.
    • Klupp, B.G. et al. Integrity of the linker of nucleoskeleton and cytoskeleton is required for efficient herpesvirus nuclear egress. J Virol 2017;91:e00330–17. This study provides evidence that the maintanance of the LINC complex is critical for nuclear egress of PRV likely because it keeps primary enveloped virions in the perinuclear space in proximity to the outer nuclear membrane where de-envelopment must take place. Google Scholar
  94. 94.
    Liang L, Tanaka M, Kawaguchi Y, Baines JD. Cell lines that support replication of a novel herpes simplex virus 1 UL31 deletion mutant can properly target UL34 protein to the nuclear rim in the absence of UL31. Virology. 2004;329:68–76.CrossRefGoogle Scholar
  95. 95.
    Grimm KS, Klupp BG, Granzow H, Muller FM, Fuchs W, Mettenleiter TC. Analysis of viral and cellular factors influencing herpesvirus-induced nuclear envelope breakdown. J Virol. 2012;86:6512–21.CrossRefGoogle Scholar
  96. 96.
    Klupp BG, Granzow H, Mettenleiter TC. Nuclear envelope breakdown can substitute for primary envelopment-mediated nuclear egress of herpesviruses. J Virol. 2011;85:8285–92.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biomedical and Molecular SciencesQueen’s UniversityKingstonCanada

Personalised recommendations