Advertisement

Salmonella Typhimurium as an Anticancer Therapy: Recent Advances and Perspectives

  • Katherine M. Broadway
  • Birgit E. ScharfEmail author
Microbial Anti-cancer Therapy and Prevention (PJF Rider, L Sweeny, and KG Kousoulas, Section Editors)
  • 43 Downloads
Part of the following topical collections:
  1. Topical Collection on Microbial Anti-cancer Therapy and Prevention

Abstract

Purpose of Review

Bacteria were first conceived as potential cancer therapeutics in the nineteenth century. Since then, a wide range of advancements has been made especially in the advent of microbial engineering, particularly in the Salmonella Typhimurium serovar. Recent developments include attenuated profiles of Salmonella for safe delivery, as well as genetic engineering for targeting to cancerous tissue and improved efficacy for antitumor effects. This review provides a summary of recent advances in the field of Salmonella-mediated cancer therapy and implications for further clinical testing.

Recent Findings

A focus of recent Salmonella-mediated cancer therapies is genetic engineering of the bacteria for optimized tumor targeting and anticancer effects. Careful design has led to the use of attenuated Salmonella as drug delivery vehicles and tumor-targeting therapeutics with excellent safety and therapeutic efficacy in countless murine tumor models. Moreover, Salmonella has the potential for use as imaging and diagnostic tools that would improve patient prognosis through early awareness.

Summary

Here, we have detailed recent advances in the use of Salmonella as a therapy to combat cancer. Continued innovative and novel discovery in this field of study will yield a promising future for the use of Salmonella-mediated cancer therapies in cancer care.

Keywords

Antitumor agents Bacterial engineering Bacterial-mediated cancer therapy Cancer therapy 

Notes

Acknowledgments

The images in this article were created using BioRender.

Funding Information

This work was supported by College of Science Dean’s Discovery Fund from Virginia Tech to B.E.S.K.M.B. was supported by a Oak Ridge Institute for Science and Education (ORISE) post-doctoral fellowship in microbiology.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Heymach J, et al. Clinical cancer advances 2018: annual report on progress against cancer from the American Society of Clinical Oncology. J Clin Oncol. 2018;36(10):1020–44.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.••
    Forbes, N.S., et al., White paper on microbial anti-cancer therapy and prevention. J Immunother Cancer, 2018. 6(1): p. 78. This work highlights the importance and application of microbial-based cancer therapies and details a path forward for clinical applications. Google Scholar
  3. 3.
    Pawelek JM, Low KB, Bermudes D. Bacteria as tumour-targeting vectors. Lancet Oncol. 2003;4(9):548–56.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Coley WB II. Contribution to the knowledge of sarcoma. Ann Surg. 1891;14(3):199–220.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    McCarthy EF. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J. 2006;26:154–8.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Dolgin E. From spinach scare to cancer care. Nat Med. 2011;17:273.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Eisenstark A, et al. Development of Salmonella strains as cancer therapy agents and testing in tumor cell lines. Methods Mol Biol. 2007;394:323–54.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Flentie K, et al. A bioluminescent transposon reporter-trap identifies tumor-specific microenvironment-induced promoters in Salmonella for conditional bacterial-based tumor therapy. Cancer Discov. 2012;2(7):624–37.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Low KB, et al. Construction of VNP20009: a novel, genetically stable antibiotic-sensitive strain of tumor-targeting Salmonella for parenteral administration in humans. Methods Mol Med. 2004;90:47–60.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Toso JF, et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol. 2002;20(1):142–52.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Broadway KM, et al. Complete genome sequence of Salmonella enterica serovar Typhimurium VNP20009, a strain engineered for tumor targeting. J Biotechnol. 2014.Google Scholar
  12. 12.
    Murray SR, et al. Hot spot for a large deletion in the 18- to 19-centisome region confers a multiple phenotype in Salmonella enterica serovar Typhimurium strain ATCC 14028. J Bacteriol. 2004;186(24):8516–23.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Broadway KM, et al. Rescuing chemotaxis of the anticancer agent Salmonella enterica serovar Typhimurium VNP20009. J Biotechnol. 2015;211:117–20.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Coutermarsh-Ott SL, et al. Effect of Salmonella enterica serovar Typhimurium VNP20009 and VNP20009 with restored chemotaxis on 4T1 mouse mammary carcinoma progression. Oncotarget. 2017;8(20):33601–33,613.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Thamm DH, et al. Systemic administration of an attenuated, tumor-targeting Salmonella typhimurium to dogs with spontaneous neoplasia: phase I evaluation. Clin Cancer Res. 2005;11(13):4827–34.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Zheng JH, Min J-J. Targeted cancer therapy using engineered Salmonella typhimurium. Chonnam Med J. 2016;52(3):173–84.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Zhao M, et al. Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci U S A. 2005;102(3):755–60.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Zhao M, et al. Targeted therapy with a Salmonella typhimurium leucine-arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res. 2006;66(15):7647–52.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Zhao M, et al. Monotherapy with a tumor-targeting mutant of Salmonella typhimurium cures orthotopic metastatic mouse models of human prostate cancer. Proc Natl Acad Sci U S A. 2007;104(24):10170–4.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Zhang Y, et al. Determination of the optimal route of administration of Salmonella typhimurium A1-R to target breast cancer in nude mice. Anticancer Res. 2012;32(7):2501–8.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Nagakura C, et al. Efficacy of a genetically-modified Salmonella typhimurium in an orthotopic human pancreatic cancer in nude mice. Anticancer Res. 2009;29(6):1873–8.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Hiroshima Y, et al. Comparison of efficacy of Salmonella typhimurium A1-R and chemotherapy on stem-like and non-stem human pancreatic cancer cells. Cell Cycle. 2013;12(17):2774–80.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Matsumoto Y, et al. Intraperitoneal administration of tumor-targeting Salmonella typhimurium A1-R inhibits disseminated human ovarian cancer and extends survival in nude mice. Oncotarget. 2015;6(13):11369–77.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Hayashi K, et al. Systemic targeting of primary bone tumor and lung metastasis of high-grade osteosarcoma in nude mice with a tumor-selective strain of Salmonella typhimurium. Cell Cycle. 2009;8(6):870–5.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Kimura H, et al. Targeted therapy of spinal cord glioma with a genetically modified Salmonella typhimurium. Cell Prolif. 2010;43(1):41–8.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Momiyama M, et al. Inhibition and eradication of human glioma with tumor-targeting Salmonella typhimurium in an orthotopic nude-mouse model. Cell Cycle. 2012;11(3):628–32.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Miyazaki M, et al. Clinical practice guidelines for the management of biliary tract cancers 2015: the 2nd English edition. J Hepatobiliary Pancreat Sci. 2015;22(4):249–73.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Yam C, et al. Monotherapy with a tumor-targeting mutant of S. typhimurium inhibits liver metastasis in a mouse model of pancreatic cancer. J Surg Res. 2010;164(2):248–55.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Murakami T, et al. Efficacy of tumor-targeting Salmonella typhimurium A1-R against malignancies in patient-derived orthotopic xenograft (PDOX) murine models. Cells. 2019;8(6):599.PubMedCentralCrossRefGoogle Scholar
  30. 30.
    Na HS, et al. Immune response induced by Salmonella typhimurium defective in ppGpp synthesis. Vaccine. 2006;24(12):2027–34.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Kim JE, et al. Salmonella typhimurium suppresses tumor growth via the pro-inflammatory cytokine interleukin-1beta. Theranostics. 2015;5(12):1328–42.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Jiang SN, et al. Engineering of bacteria for the visualization of targeted delivery of a cytolytic anticancer agent. Mol Ther. 2013;21(11):1985–95.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Le UN, et al. Engineering and visualization of bacteria for targeting infarcted myocardium. Mol Ther. 2011;19(5):951–9.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Nguyen VH, et al. Genetically engineered Salmonella typhimurium as an imageable therapeutic probe for cancer. Cancer Res. 2010;70(1):18–23.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Jeong J-H, et al. Anti-tumoral effect of the mitochondrial target domain of Noxa delivered by an engineered Salmonella typhimurium. PLOS One. 2014;9(1):e80050.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    al-Ramadi BK, et al. Potent anti-tumor activity of systemically-administered IL2-expressing Salmonella correlates with decreased angiogenesis and enhanced tumor apoptosis. Clin Immunol. 2009;130(1):89–97.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Yoon W, et al. Engineered Salmonella typhimurium expressing E7 fusion protein, derived from human papillomavirus, inhibits tumor growth in cervical tumor-bearing mice. Biotechnol Lett. 2014;36(2):349–56.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Saltzman DA, et al. Attenuated Salmonella typhimurium containing interleukin-2 decreases MC-38 hepatic metastases: a novel anti-tumor agent. Cancer Biother Radiopharm. 1996;11(2):145–53.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Zhang L, et al. Intratumoral delivery and suppression of prostate tumor growth by attenuated Salmonella enterica serovar typhimurium carrying plasmid-based small interfering RNAs. Cancer Res. 2007;67(12):5859–64.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    VanCott JL, et al. Regulation of host immune responses by modification of Salmonella virulence genes. Nat Med. 1998;4(11):1247–52.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Jia H, et al. Antitumor effects of Stat3-siRNA and endostatin combined therapies, delivered by attenuated Salmonella, on orthotopically implanted hepatocarcinoma. Cancer Immunol Immunother. 2012;61(11):1977–87.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Grille S, et al. Salmonella enterica serovar Typhimurium immunotherapy for B cell lymphoma induces broad anti-tumour immunity with therapeutic effect. Immunology. 2014;143(3):428–37.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Manuel ER, et al. Enhancement of cancer vaccine therapy by systemic delivery of a tumor-targeting Salmonella-based STAT3 shRNA suppresses the growth of established melanoma tumors. Cancer Res. 2011;71(12):4183–91.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Xu X, et al. Effective cancer vaccine platform based on attenuated Salmonella and a type III secretion system. Cancer Res. 2014;74(21):6260.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Xiong G, et al. Novel cancer vaccine based on genes of Salmonella pathogenicity island 2. Int J Cancer. 2010;126(11):2622–34.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Xiang R, et al. A DNA vaccine targeting survivin combines apoptosis with suppression of angiogenesis in lung tumor eradication. Cancer Res. 2005;65(2):553–61.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Lee SH, et al. Endoglin (CD105) is a target for an oral DNA vaccine against breast cancer. Cancer Immunol Immunother. 2006;55(12):1565–74.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Qian BJ, et al. MTDH/AEG-1-based DNA vaccine suppresses lung metastasis and enhances chemosensitivity to doxorubicin in breast cancer. Cancer Immunol Immunother. 2011;60(6):883–93.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Liang K, et al. Endostatin gene therapy delivered by attenuated Salmonella typhimurium in murine tumor models. Cancer Gene Ther. 2018;25(7):167–83.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Chirullo B, et al. Attenuated mutant strain of Salmonella Typhimurium lacking the ZnuABC transporter contrasts tumor growth promoting anti-cancer immune response. Oncotarget. 2015;6(19):17648–60.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Roider E, et al. Invasion and destruction of a murine fibrosarcoma by Salmonella-induced effector CD8 T cells as a therapeutic intervention against cancer. Cancer Immunol Immunother. 2011;60(3):371–80.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Lin CS, et al. Enhancement of anti-murine colon cancer immunity by fusion of a SARS fragment to a low-immunogenic carcinoembryonic antigen. Biol Proced Online. 2012;14:2.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Ye J, et al. Recombinant Salmonella-based 4-1BBL vaccine enhances T cell immunity and inhibits the development of colorectal cancer in rats: in vivo effects of vaccine containing 4-1BBL. J Biomed Sci. 2013;20:8.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Jarosz M, et al. Therapeutic antitumor potential of endoglin-based DNA vaccine combined with immunomodulatory agents. Gene Ther. 2013;20(3):262–73.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Li Z, et al. Recombinant attenuated Salmonella typhimurium carrying a plasmid co-expressing ENDO-VEGI151 and survivin siRNA inhibits the growth of breast cancer in vivo. Mol Med Rep. 2013;7(4):1215–22.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Shi L, et al. Angiogenic inhibitors delivered by the type III secretion system of tumor-targeting Salmonella typhimurium safely shrink tumors in mice. AMB Express. 2016;6(1):56.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Berger E, et al. Salmonella SL7207 application is the most effective DNA vaccine delivery method for successful tumor eradication in a murine model for neuroblastoma. Cancer Lett. 2013;331(2):167–73.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Li C-X, et al. ‘Obligate’ anaerobic Salmonella strain YB1 suppresses liver tumor growth and metastasis in nude mice. Oncol Lett. 2017;13(1):177–83.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Yu B, et al. Obligate anaerobic Salmonella typhimurium strain YB1 treatment on xenograft tumor in immunocompetent mouse model. Oncol Lett. 2015;10(2):1069–74.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment. Science. 2015;348(6230):74–80.CrossRefGoogle Scholar
  61. 61.
    Sznol M, et al. Use of preferentially replicating bacteria for the treatment of cancer. J Clin Invest. 2000;105(8):1027–30.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Cai Z, et al. Activation of Toll-like receptor 5 on breast cancer cells by flagellin suppresses cell proliferation and tumor growth. Cancer Res. 2011;71(7):2466–75.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Liu F, et al. Vessel destruction by tumor-targeting Salmonella typhimurium A1-R is enhanced by high tumor vascularity. Cell Cycle. 2010;9(22):4518–24.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Leschner S, et al. Tumor invasion of Salmonella enterica serovar Typhimurium is accompanied by strong hemorrhage promoted by TNF-alpha. PLoS One. 2009;4(8):e6692.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Frahm M, et al. Efficiency of conditionally attenuated Salmonella enterica serovar Typhimurium in bacterium-mediated tumor therapy. MBio. 2015;6(2).Google Scholar
  66. 66.
    Kaimala S, et al. Salmonella-mediated tumor regression involves targeting of tumor myeloid suppressor cells causing a shift to M1-like phenotype and reduction in suppressive capacity. Cancer Immunol Immunother. 2014;63(6):587–99.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Kuan YD, Lee CH. Salmonella overcomes tumor immune tolerance by inhibition of tumor indoleamine 2, 3-dioxygenase 1 expression. Oncotarget. 2016;7(1):374–85.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Toley BJ, Forbes NS. Motility is critical for effective distribution and accumulation of bacteria in tumor tissue. Integr Biol (Camb). 2012;4(2):165–76.CrossRefGoogle Scholar
  69. 69.
    Kasinskas RW, Forbes NS. Salmonella typhimurium lacking ribose chemoreceptors localize in tumor quiescence and induce apoptosis. Cancer Res. 2007;67(7):3201–9.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Kasinskas RW, Forbes NS. Salmonella typhimurium specifically chemotax and proliferate in heterogeneous tumor tissue in vitro. Biotechnol Bioeng. 2006;94(4):710–21.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Zhang M, Forbes NS. Trg-deficient Salmonella colonize quiescent tumor regions by exclusively penetrating or proliferating. J Control Release. 2015;199:180–9.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Silva-Valenzuela CA, et al. Solid tumors provide niche-specific conditions that lead to preferential growth of Salmonella. Oncotarget. 2016.Google Scholar
  73. 73.
    Crull K, Bumann D, Weiss S. Influence of infection route and virulence factors on colonization of solid tumors by Salmonella enterica serovar Typhimurium. FEMS Immunol Med Microbiol. 2011;62(1):75–83.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Nguyen VH, Min JJ. Salmonella-mediated cancer therapy: roles and potential. Nucl Med Mol Imaging. 2017;51(2):118–26.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Loeffler M, et al. IL-18-producing Salmonella inhibit tumor growth. Cancer Gene Ther. 2008;15(12):787–94.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Loeffler M, et al. Salmonella typhimurium engineered to produce CCL21 inhibit tumor growth. Cancer Immunol Immunother. 2009;58(5):769–75.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Loeffler M, et al. Attenuated Salmonella engineered to produce human cytokine LIGHT inhibit tumor growth. Proc Natl Acad Sci U S A. 2007;104(31):12879–12,883.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Ha XQ, et al. Inhibitory effects of the attenuated Salmonella typhimurium containing the IL-2 gene on hepatic tumors in mice. J Biomed Biotechnol. 2012;2012:946139.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Agorio C, et al. Live attenuated Salmonella as a vector for oral cytokine gene therapy in melanoma. J Gene Med. 2007;9(5):416–23.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Ryan RM, et al. Bacterial delivery of a novel cytolysin to hypoxic areas of solid tumors. Gene Ther. 2009;16(3):329–39.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Hong H, et al. Targeted deletion of the ara operon of Salmonella typhimurium enhances L-arabinose accumulation and drives P(BAD)-promoted expression of anti-cancer toxins and imaging agents. Cell Cycle. 2014;13(19):3112–20.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Chen JQ, et al. The engineered Salmonella typhimurium inhibits tumorigenesis in advanced glioma. Onco Targets Ther. 2015;8:2555–63.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Ganai S, Arenas RB, Forbes NS. Tumour-targeted delivery of TRAIL using Salmonella typhimurium enhances breast cancer survival in mice. Br J Cancer. 2009;101(10):1683–91.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Chen J, et al. Salmonella-mediated tumor-targeting TRAIL gene therapy significantly suppresses melanoma growth in mouse model. Cancer Sci. 2012;103(2):325–33.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Shi L, et al. Combined prokaryotic-eukaryotic delivery and expression of therapeutic factors through a primed autocatalytic positive-feedback loop. J Control Release. 2016;222:130–40.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Quintero D, et al. EGFR-targeted Chimeras of Pseudomonas ToxA released into the extracellular milieu by attenuated Salmonella selectively kill tumor cells. Biotechnol Bioeng. 2016;113(12):2698–711.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Guan GF, et al. Salmonella typhimurium mediated delivery of Apoptin in human laryngeal cancer. Int J Med Sci. 2013;10(12):1639–48.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Loeffler M, et al. Inhibition of tumor growth using salmonella expressing Fas ligand. J Nat Cancer Inst. 2008;100(15):1113–6.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Wang S, Kong Q, Curtiss R 3rd. New technologies in developing recombinant attenuated Salmonella vaccine vectors. Microb Pathog. 2013;58:17–28.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Kim K, et al. L-Asparaginase delivered by Salmonella typhimurium suppresses solid tumors. Mol Ther Oncolytics. 2015;2:15007.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Yang Y-W, et al. Tumor-targeted delivery of a C-terminally truncated FADD (N-FADD) significantly suppresses the B16F10 melanoma via enhancing apoptosis. Sci Rep. 2016;6:34178.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Chen T, et al. Triptolide modulates tumour-colonisation and anti-tumour effect of attenuated Salmonella encoding DNase I. Appl Microbiol Biotechnol. 2019;103(2):929–39.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Gardlik R, Fruehauf JH. Bacterial vectors and delivery systems in cancer therapy. IDrugs. 2010;13(10):701–6.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Feng KK, et al. Combined therapy with flk1-based DNA vaccine and interleukin-12 results in enhanced antiangiogenic and antitumor effects. Cancer Lett. 2005;221(1):41–7.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Lu XL, et al. The enhanced anti-angiogenic and antitumor effects of combining flk1-based DNA vaccine and IP-10. Vaccine. 2008;26(42):5352–7.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Jellbauer S, et al. CD8 T cell induction against vascular endothelial growth factor receptor 2 by Salmonella for vaccination purposes against a murine melanoma. PloS One. 2012;7(4):e34214.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Mansoori B, Sandoghchian Shotorbani S, Baradaran B. RNA interference and its role in cancer therapy. Adv Pharm Bull. 2014;4(4):313–21.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Chen X, et al. RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev. 2018;37(1):107–24.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Tian Y, et al. Targeted therapy via oral administration of attenuated Salmonella expression plasmid-vectored Stat3-shRNA cures orthotopically transplanted mouse HCC. Cancer Gene Ther. 2012;19(6):393–401.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Yang N, et al. Oral administration of attenuated S. typhimurium carrying shRNA-expressing vectors as a cancer therapeutic. Cancer Biol Ther. 2008;7(1):145–51.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Yoon W, et al. Therapeutic advantage of genetically engineered Salmonella typhimurium carrying short hairpin RNA against inhibin alpha subunit in cancer treatment. Ann Oncol. 2018;29(9):2010–7.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.•
    Zhao T, et al. PD-1-siRNA delivered by attenuated Salmonella enhances the antimelanoma effect of pimozide. Cell Death Dis. 2019;10(3):164. This work shows an effective combination of chemotherapy and bacterial-based immunotherapy via RNA interference resulting in prolonged animal survival and increased T cell response. Google Scholar
  103. 103.
    Bereta M, et al. Improving tumor targeting and therapeutic potential of Salmonella VNP20009 by displaying cell surface CEA-specific antibodies. Vaccine. 2007;25(21):4183–92.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.•
    Massa PE, et al. Salmonella engineered to express CD20-targeting antibodies and a drug-converting enzyme can eradicate human lymphomas. Blood. 2013;122(5):705. This paper applies a Salmonella surface-expressed antibody to effective tumor targeting and increased efficacy in vivo, significantly increasing the safety profile of the bacterial strain. PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Du FH, Mills EA, Mao-Draayer Y. Next-generation anti-CD20 monoclonal antibodies in autoimmune disease treatment. Auto Immun Highlights. 2017;8(1):12.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.•
    Park SH, et al. RGD peptide cell-surface display enhances the targeting and therapeutic efficacy of attenuated Salmonella-mediated cancer therapy. Theranostics. 2016;6(10):1672–82. This paper details a novel approach using tumor-associated antigens for targeted delivery of Salmonella Typhimurium. PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Danhier F, Le Breton A, Preat V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm. 2012;9(11):2961–73.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Alvarez E. B16 murine melanoma: historical perspective on the development of a solid tumor model, in Tumor models in cancer research. In: Teicher BA, editor. . Totowa: Humana Press; 2011. p. 79–95.Google Scholar
  109. 109.
    Saenger YM, et al. Improved tumor immunity using anti-tyrosinase related protein-1 monoclonal antibody combined with DNA vaccines in murine melanoma. Cancer Res. 2008;68(23):9884.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Hara I, Takechi Y, Houghton AN. Implicating a role for immune recognition of self in tumor rejection: passive immunization against the brown locus protein. J Exp Med. 1995;182(5):1609–14.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Soghomonyan SA, et al. Positron emission tomography (PET) imaging of tumor-localized Salmonella expressing HSV1-TK. Cancer Gene Ther. 2004;12:101.CrossRefGoogle Scholar
  112. 112.
    Tjuvajev J, et al. Salmonella-based tumor-targeted cancer therapy: tumor amplified protein expression therapy (TAPET) for diagnostic imaging. J Control Release. 2001;74(1–3):313–5.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Panteli JT, et al. Genetically modified bacteria as a tool to detect microscopic solid tumor masses with triggered release of a recombinant biomarker. Integr Biol (Camb). 2015;7(4):423–34.CrossRefGoogle Scholar
  114. 114.••
    Panteli JT, Van Dessel N, Forbes NS. Detection of tumors with fluoromarker-releasing bacteria. Int J Cancer. 2019. An alternative application is described where Salmonella Typhimurium is used as a fluoromarker-release system for detection of microscopic tumors and early diagnostics. Google Scholar
  115. 115.
    Kazmierczak R, et al. Direct attachment of nanoparticle cargo to Salmonella typhimurium membranes designed for combination bacteriotherapy against tumors. Methods Mol Biol. 2015;1225:151–63.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Suh S, et al. Nanoscale Bacteria-Enabled Autonomous Drug Delivery System (NanoBEADS) enhances intratumoral transport of nanomedicine. Adv Sci (Weinh). 2019;6(3):1801309.CrossRefGoogle Scholar
  117. 117.
    Ektate K, et al. Chemo-immunotherapy of colon cancer with focused ultrasound and Salmonella-laden temperature sensitive liposomes (thermobots). Sci Rep. 2018;8(1):13062.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Yu B, et al. Explicit hypoxia targeting with tumor suppression by creating an “obligate” anaerobic Salmonella Typhimurium strain. Sci Rep. 2012;2:436.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Chen F, et al. Nanophotosensitizer-engineered Salmonella bacteria with hypoxia targeting and photothermal-assisted mutual bioaccumulation for solid tumor therapy. Biomaterials. 2019;214:119226.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Chen W, et al. Bacteria-driven hypoxia targeting for combined biotherapy and photothermal therapy. ACS Nano. 2018;12(6):5995–6005.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Mercado-Lubo R, et al. A Salmonella nanoparticle mimic overcomes multidrug resistance in tumours. Nat Commun. 2016;7:12225.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Felgner S, et al. Biomimetic Salmonella: a next-generation therapeutic vector? Trends Microbiol. 2016;24(11):850–2.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Torres W, et al. Bacteria in cancer therapy: beyond immunostimulation. J Cancer Metastasis Treat. 2018;4(2018):1.Google Scholar
  124. 124.
    Nemunaitis J, et al. Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther. 2003;10(10):737–44.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Heimann DM, Rosenberg SA. Continuous intravenous administration of live genetically modified salmonella typhimurium in patients with metastatic melanoma. J Immunother. 2003;26(2):179–80.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Curran CS, et al. Report on the NCI Microbial-Based Cancer Therapy Conference. Cancer Immunol Res. 2018;6(2):122.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Luo X, et al. Antitumor effect of VNP20009, an attenuated Salmonella, in murine tumor models. Oncol Res. 2001;12(11–12):501–8.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Clairmont C, et al. Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella typhimurium. J Infect Dis. 2000;181(6):1996–2002.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Lee KC, et al. Comparative evaluation of the acute toxic effects in monkeys, pigs and mice of a genetically engineered Salmonella strain (VNP20009) being developed as an antitumor agent. Int J Toxicol. 2000;19(1):19–25.CrossRefGoogle Scholar
  130. 130.
    Cunningham C, Nemunaitis J. A phase I trial of genetically modified Salmonella typhimurium expressing cytosine deaminase (TAPET-CD, VNP20029) administered by intratumoral injection in combination with 5-fluorocytosine for patients with advanced or metastatic cancer. Protocol no: CL-017. Version: April 9, 2001. Hum Gene Ther. 2001;12(12):1594–6.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Hoffman RM. Tumor-targeting Salmonella typhimurium A1-R: an overview. Methods Mol Biol. 2016;1409:1–8.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Hayashi K, et al. Cancer metastasis directly eradicated by targeted therapy with a modified Salmonella typhimurium. J Cell Biochem. 2009;106(6):992–8.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Hiroshima Y, et al. Efficacy of tumor-targeting Salmonella typhimurium A1-R in combination with anti-angiogenesis therapy on a pancreatic cancer patient-derived orthotopic xenograft (PDOX) and cell line mouse models. Oncotarget. 2014;5(23):12346–57.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Kawaguchi K, et al. Tumor-targeting Salmonella typhimurium A1-R combined with temozolomide regresses malignant melanoma with a BRAF-V600E mutation in a patient-derived orthotopic xenograft (PDOX) model. Oncotarget. 2016;7(52):85929–85,936.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Murakami T, et al. Tumor-targeting Salmonella typhimurium A1-R in combination with doxorubicin eradicate soft tissue sarcoma in a patient-derived orthotopic xenograft (PDOX) model. Oncotarget. 2016;7(11):12783–90.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Igarashi K, et al. Tumor-targeting Salmonella typhimurium A1-R combined with recombinant methioninase and cisplatinum eradicates an osteosarcoma cisplatinum-resistant lung metastasis in a patient-derived orthotopic xenograft (PDOX) mouse model: decoy, trap and kill chemotherapy moves toward the clinic. Cell Cycle. 2018;17(6):801–9.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Yano S, et al. Tumor-specific cell-cycle decoy by Salmonella typhimurium A1-R combined with tumor-selective cell-cycle trap by methioninase overcome tumor intrinsic chemoresistance as visualized by FUCCI imaging. Cell Cycle. 2016;15(13):1715–23.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Zhang Y, et al. Tumor-targeting Salmonella typhimurium A1-R arrests growth of breast-cancer brain metastasis. Oncotarget. 2015;6(5):2615–22.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Murakami T, et al. Adjuvant treatment with tumor-targeting Salmonella typhimurium A1-R reduces recurrence and increases survival after liver metastasis resection in an orthotopic nude mouse model. Oncotarget. 2015;6(39):41856–41,862.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Yang CJ, et al. Salmonella overcomes drug resistance in tumor through P-glycoprotein downregulation. Int J Med Sci. 2018;15(6):574–9.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Phan TX, et al. Activation of inflammasome by attenuated Salmonella typhimurium in bacteria-mediated cancer therapy. Microbiol Immunol. 2015;59(11):664–75.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Kim K, et al. Cell mass-dependent expression of an anticancer protein drug by tumor-targeted Salmonella. Oncotarget. 2018;9(9):8548–59.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Lim D, et al. Anti-tumor activity of an immunotoxin (TGFalpha-PE38) delivered by attenuated Salmonella typhimurium. Oncotarget. 2017;8(23):37550–37,560.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    al-Ramadi BK, et al. Influence of vector-encoded cytokines on anti-Salmonella immunity: divergent effects of interleukin-2 and tumor necrosis factor alpha. Infect Immun. 2001;69(6):3980–8.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Strugnell R, et al. Characterization of a Salmonella typhimurium aro vaccine strain expressing the P.69 antigen of Bordetella pertussis. Infect Immun. 1992;60(10):3994.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Yoon W, et al. Application of genetically engineered Salmonella typhimurium for interferon-gamma-induced therapy against melanoma. Eur J Cancer. 2017;70:48–61.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Yoon WS, et al. Antitumor therapeutic effects of a genetically engineered Salmonella typhimurium harboring TNF-alpha in mice. Appl Microbiol Biotechnol. 2011;89(6):1807–19.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Yoon WS, et al. Salmonella typhimurium with gamma-radiation induced H2AX phosphorylation and apoptosis in melanoma. Biosci Biotechnol Biochem. 2014;78(6):1082–5.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Sorenson BS, et al. Attenuated Salmonella typhimurium with IL-2 gene reduces pulmonary metastases in murine osteosarcoma. Clin Orthop Relat Res. 2008;466(6):1285–91.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Nakayama K, Kelly SM, Curtiss R. Construction of an ASD+ expression-cloning vector: stable maintenance and high level expression of cloned genes in a Salmonella vaccine strain. Bio/Technology. 1988;6(6):693–7.Google Scholar
  151. 151.
    Kazmierczak RA, et al. Salmonella bacterial monotherapy reduces autochthonous prostate tumor burden in the TRAMP mouse model. PloS One. 2016;11(8):e0160926.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Sutton A, Buencamino R, Eisenstark A. rpoS mutants in archival cultures of Salmonella enterica serovar typhimurium. J Bacteriol. 2000;182(16):4375–9.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Chabalgoity JA, et al. Salmonella typhimurium as a basis for a live oral Echinococcus granulosus vaccine. Vaccine. 2000;19(4):460–9.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Pasquali P, et al. Attenuated Salmonella enterica serovar Typhimurium lacking the ZnuABC transporter confers immune-based protection against challenge infections in mice. Vaccine. 2008;26(27–28):3421–6.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Meng JZ, et al. Oral vaccination with attenuated Salmonella enterica strains encoding T cell epitopes from tumor antigen NY-ESO-1 induces specific cytotoxic T-lymphocyte responses. Clin Vaccine Immunol. 2010;17(6):889–94.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Yang N, et al. Attenuated Salmonella typhimurium carrying shRNA-expressing vectors elicit RNA interference in murine bladder tumors. Acta Pharmacol Sinica. 2011;32(3):368–74.CrossRefGoogle Scholar
  157. 157.
    Yuhua L, et al. Oral cytokine gene therapy against murine tumor using attenuated Salmonella typhimurium. Int J Cancer. 2001;94(3):438–43.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Zuo SG, et al. Orally administered DNA vaccine delivery by attenuated Salmonella typhimurium targeting fetal liver kinase 1 inhibits murine Lewis lung carcinoma growth and metastasis. Biol Pharm Bull. 2010;33(2):174–82.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Yuhua L, et al. Prophylaxis of tumor through oral administration of IL-12 GM-CSF gene carried by live attenuated salmonella. Chin Sci Bull. 2001;46(13):1107–11.CrossRefGoogle Scholar
  160. 160.
    Saltzman D, et al. Low dose chemotherapy combined with attenuated Salmonella decreases tumor burden and is less toxic than high dose chemotherapy in an autochthonous murine model of breast cancer. Surgery. 2018;163(3):509–14.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Ahmad S, et al. Induction of effective antitumor response after mucosal bacterial vector mediated DNA vaccination with endogenous prostate cancer specific antigen. J Urol. 2011;186(2):687–93.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Cao HD, et al. Attenuated Salmonella typhimurium carrying TRAIL and VP3 genes inhibits the growth of gastric cancer cells in vitro and in vivo. Tumori. 2010;96(2):296–303.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Mei Y, et al. Combining DNA vaccine and AIDA-1 in attenuated Salmonella activates tumor-specific CD4(+) and CD8(+) T-cell responses. Cancer Immunol Res. 2017;5(6):503–14.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Deng J, et al. Enhancement of ovarian cancer chemotherapy by delivery of multidrug-resistance gene small interfering RNA using tumor targeting Salmonella. J Obstet Gynaecol Res. 2015;41(4):615–22.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Ning BT, et al. Treatment of neuroblastoma with an engineered “obligate” anaerobic Salmonella typhimurium strain YB1. J Cancer. 2017;8(9):1609–18.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Liu X, et al. Radiotherapy combined with an engineered Salmonella typhimurium inhibits tumor growth in a mouse model of colon cancer. Exp Anim. 2016;65(4):413–8.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Li X, et al. Delivery of the co-expression plasmid pEndo-Si-Stat3 by attenuated Salmonella serovar typhimurium for prostate cancer treatment. J Cancer Res Clin Oncol. 2013;139(6):971–80.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Manuel ER, et al. Salmonella-based therapy targeting indoleamine 2,3-dioxygenase coupled with enzymatic depletion of tumor hyaluronan induces complete regression of aggressive pancreatic tumors. Cancer Immunol Res. 2015;3(9):1096–107.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Blache CA, et al. Systemic delivery of Salmonella typhimurium transformed with IDO shRNA enhances intratumoral vector colonization and suppresses tumor growth. Cancer Res. 2012;72(24):6447–56.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Zhao C, et al. Enhanced therapeutic effect of an antiangiogenesis peptide on lung cancer in vivo combined with salmonella VNP20009 carrying a Sox2 shRNA construct. J Exp Clin Cancer Res. 2016;35(1):107.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.U.S. Army Combat Capabilities Development Command Chemical Biological CenterAberdeen Proving GroundUSA
  2. 2.Department of Biological Sciences, Life Sciences IVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations