Advertisement

Memories of Paolo de Bartolomeis

  • Luca Migliorini
Article
  • 4 Downloads

Notes

References

  1. 1.
    de Bartolomeis, P.: Algebre di Stein nel caso reale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur (8) 58(4), 482–486 (1975)MathSciNetzbMATHGoogle Scholar
  2. 2.
    de Bartolomeis, P.: Normalit e paracompattezza nelle varieta topologiche. Boll. Un. Mat. Ital. (4) 11(2), 279–288 (1975)MathSciNetzbMATHGoogle Scholar
  3. 3.
    de Bartolomeis, P.: Algebre di Stein nel caso reale. Rend. Accad. Naz. XL 5, 105–144 (1977)MathSciNetGoogle Scholar
  4. 4.
    de Bartolomeis, P.: Una nota sulla topologia delle algebre reali coerenti. Boll. Un. Mat. Ital. (5) 13A(1), 123–125 (1976)MathSciNetzbMATHGoogle Scholar
  5. 5.
    de Bartolomeis, P.: Stime in norme tipo Hardy dell’operatore \({\overline{\partial }}\) e teoremi di struttura per le funzioni di \({{\cal{H}}}^p\) in domini strettamente pseudoconvessi di \({\mathbf{C}}^n\). Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 61(12), 30–36 (1976)MathSciNetGoogle Scholar
  6. 6.
    de Bartolomeis, P., Landucci, M.: Rgularisation au bord et problme de Cauchy pour l’oprateur e \({\overline{\partial }}\) croissance “de type Hardy”. C. R. Acad. Sci. Paris Sér. AB 285(15), A937–A939 (1977)Google Scholar
  7. 7.
    de Bartolomeis, P., Landucci, M.: Rgularisation au bord et problme me de Cauchy pour l’oprateur e \({\overline{\partial }}\) croissance “de type Hardy”, Colloque d’Analyse Harmonique et Complexe. University of Aix-Marseille I, Marseille (1977)Google Scholar
  8. 8.
    de Bartolomeis, P.: Some constructions for relative approximation of holomorphic functions, several complex variables (Cortona, 1976/1977), pp. 65–73, Scuola Norm. Sup. Pisa, Pisa (1978)Google Scholar
  9. 9.
    de Bartolomeis, P., Landucci, M.: Rgularisation au bord et problme me de Cauchy pour l’oprateur \({\overline{\partial }}\) croissance de “type Hardy”. Bull. Sci. Math. (2) 103(1), 17–32 (1979)MathSciNetzbMATHGoogle Scholar
  10. 10.
    de Bartolomeis, P.: Approximation theorems for functions in strictly pseudoconvex domains of Stein manifolds. Boll. Un. Mat. Ital. B (5) 16(1), 9–21 (1979)MathSciNetGoogle Scholar
  11. 11.
    de Bartolomeis, P.: Le deuxme problme de Cousin avec condition au bord, C. R. Acad. Sci. Paris Sér. AB 289(15), A739–A741 (1979)Google Scholar
  12. 12.
    de Bartolomeis, P.: “Hardy like” estimates for the operator \({\overline{\partial }}\) and scripture theorems for functions in \( {\cal{H}}^p\) in strictly pseudoconvex domains. Boll. Un. Mat. Ital. B (5) 16(2), 430–450 (1979)MathSciNetzbMATHGoogle Scholar
  13. 13.
    de Bartolomeis, P., Tomassini, G.: Traces of pluriharmonic functions, analytic functions, Kozubnik 1979. In: Proceedings of the Seventh Conference, Kozubnik, 1979. Lecture Notes in Mathematics, vol. 798, pp. 1017. Springer, Berlin (1980)Google Scholar
  14. 14.
    Bedford, E., de Bartolomeis, P.: Levi flat hypersurfaces which are not holomorphically flat. Proc. Am. Math. Soc. 81(4), 575–578 (1981)MathSciNetCrossRefGoogle Scholar
  15. 15.
    de Bartolomeis, P.: On the trace of analytic sets. (Italian) Boll. Un. Mat. Ital. B (5) 18(1), 295–303 (1981)MathSciNetGoogle Scholar
  16. 16.
    de Bartolomeis, P., Tomassini, G.: Idéaux de type fini dans \(A_\infty (D)\). C. R. Acad. Sci. Paris Sér. I Math 293(2), 133–134 (1981)MathSciNetzbMATHGoogle Scholar
  17. 17.
    de Bartolomeis, P., Tomassini, G.: Traces of pluriharmonic functions. Compositio Math. 44(13), 29–39 (1981)MathSciNetzbMATHGoogle Scholar
  18. 18.
    de Bartolomeis, P., Tomassini, G.: Finitely generated ideals in \(A\_\infty (D)\). Adv. Math. 46(2), 162–170 (1982)MathSciNetCrossRefGoogle Scholar
  19. 19.
    de Bartolomeis, P.: Sur l’analyticité complexe de certaines applications harmoniques. C. R. Acad. Sci. Paris Sér. I Math 294(16), 525–527 (1982)MathSciNetzbMATHGoogle Scholar
  20. 20.
    de Bartolomeis, P.: Sur l’analyticité complexe de certaines applications harmoniques. In: Lelong, P. Dolbeault, H. (eds.) Skoda Analysis Seminar, 1981/1983. Lecture Notes in Mathematics, vol. 1028, pp. 27–40. Springer, Berlin (1983)Google Scholar
  21. 21.
    de Bartolomeis, P.: Générateurs holomorphes de certains idéaux de \(C_\infty (D)\). C. R. Acad. Sci. Paris Sér. I Math 300(11), 343–345 (1985)MathSciNetzbMATHGoogle Scholar
  22. 22.
    de Bartolomeis, P.: Generalized Twistor Space and Applications, Geometry Aeminars, (Bologna, 1985), pp 23–32. Univ. Stud. Bologna, Bologna (1986)Google Scholar
  23. 23.
    Burns, D., de Bartolomeis, P.: Stable harmonic maps with values in \({{\mathbf{P}}}^m({{\mathbf{C}}})\), Miniconference on operator theory and partial differential equations (North Ryde, 1986). In: Proceedings of the Centre for Mathematical Analysis. Australian National University, 14, pp. 111–116. Australian National University, Canberra (1986)Google Scholar
  24. 24.
    de Bartolomeis, P.: Holomorphic generators of some ideals in \(C_\infty (D)\). Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14(2), 199–215 (1987)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Burns, D., de Bartolomeis, P.: Stability of vector bundles and extremal metrics. Invent. Math. 92(2), 403–407 (1988)MathSciNetCrossRefGoogle Scholar
  26. 26.
    de Bartolomeis, P., Derridj, M.: Positive vector bundles and harmonic maps. Ann. Mat. Pura Appl. (4) 150, 2137 (1988)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Burns, D., de Bartolomeis, P.: Applications harmoniques stables dans \({{\mathbf{P}}}^n\). Ann. Sci. École Norm. Sup. (4) 21(2), 159–177 (1988)MathSciNetCrossRefGoogle Scholar
  28. 28.
    de Bartolomeis, P., Migliorini, L., Nannicini, A.: Espaces de twisteurs kählériens. C. R. Acad. Sci. Paris Sér. I Math 307(6), 259–261 (1988)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Burns, D., de Bartolomeis, P.: Stable harmonic maps to \({\mathbf{P}}^n\), Harmonic mappings, twistors, and \(\sigma \)- models (Luminy, 1986). In: Gauduchon, P. (ed.) Advances in Mathematical Physics, vol. 4, pp. 151–157. World Scientific Publishing, Singapore (1988)Google Scholar
  30. 30.
    Burns, D., Burstall, F., de Bartolomeis, P., Rawnsley, J.: Stability of harmonic maps of Kähler manifolds. J. Differ. Geom. 30(2), 579–594 (1989)CrossRefGoogle Scholar
  31. 31.
    de Bartolomeis, P., Migliorini, L., Nannicini, A.: Propriétés globales de l’éspace de twisteurs. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl 2(2), 147–153 (1991)MathSciNetzbMATHGoogle Scholar
  32. 32.
    de Bartolomeis, P., Migliorini, L.: Scalar curvature and twistor geometry, complex analysis (Wuppertal, 1991), pp. 33–39, Aspects of Mathematics, E17, Vieweg, Braunschweig (1991)Google Scholar
  33. 33.
    de Bartolomeis, P.: Some new global results in twistor geometry, geometry and complex variables (Bologna, 1988/1990). In: Coen, S. (ed.) Lecture Notes in Pure and Applied Mathematics, vol. 132, pp. 155–163. Dekker, New York (1991)Google Scholar
  34. 34.
    de Bartolomeis, P.: Principal bundles in action, conference on differential geometry and topology (Parma, 1991). Riv. Mat. Univ. Parma (4) 17, 1–65 (1991)MathSciNetGoogle Scholar
  35. 35.
    de Bartolomeis, P.: Twistor Constructions for Vector Bundles, Complex Analysis and Geometry, pp. 103–114. Univ. Ser. Math, Plenum (1993)zbMATHGoogle Scholar
  36. 36.
    de Bartolomeis, P.: Complex Landscapes. Differential Geometry, Complex Analysis, (Parma, 1994). Riv. Mat. Univ. Parma (5) 3(1), 109–121 (1994)MathSciNetzbMATHGoogle Scholar
  37. 37.
    de Bartolomeis, P., Tian, G.: Stability of complex vector bundles. J. Differential Geom. 43(2), 231–275 (1996)MathSciNetCrossRefGoogle Scholar
  38. 38.
    de Bartolomeis, P.: Compactifications of the space of linear complex structures. Boll. Un. Mat. Ital. B (7) 11(2), 327–346 (1997)MathSciNetzbMATHGoogle Scholar
  39. 39.
    de Bartolomeis, P.: Paolo Complex and holomorphic structures, their singularities and their invariants. Boll. Un. Mat. Ital. A (7) 11(2), 353–382 (1997)MathSciNetzbMATHGoogle Scholar
  40. 40.
    de Bartolomeis, P., Nannicini, A.: Introduction to differential geometry of twistor spaces, geometric theory of singular phenomena in partial differential equations (Cortona: 1995). Symposia in Pure Mathematics XXXVIII, pp. 91–160. Cambridge University Press, Cambridge (1998)Google Scholar
  41. 41.
    de Bartolomeis, P.: Complex Casson invariants. Riv. Mat. Univ. Parma (6) 2, 25–53 (1999)MathSciNetzbMATHGoogle Scholar
  42. 42.
    de Bartolomeis, P.: GBV Algebras, Formality Theorems, and Frobenius Manifolds, Algebraic Geometry Seminars, 1998–1999 (Italian) (Pisa), pp. 161–177. Scuola Norm. Sup, Pisa (1999)Google Scholar
  43. 43.
    de Bartolomeis, P., Tomassini, A.: On formality of some symplectic manifolds. Int. Math. Res. Notices 24, 1287–1314 (2001)MathSciNetCrossRefGoogle Scholar
  44. 44.
    de Bartolomeis, P.: \({\mathbf{Z}}\_2\) and \({\mathbf{Z}}\)-deformation theory for holomorphic and symplectic manifolds, complex, contact and symmetric manifolds. In: Kowalski, O., Musso, E., Perrone, D. (eds.) Progress in Mathematics, vol. 234, pp. 75–103. BirkhäuserGoogle Scholar
  45. 45.
    de Bartolomeis, P.: Symplectic deformations of Kähler manifolds. J. Symplectic Geom. 3(3), 341–355 (2005)MathSciNetCrossRefGoogle Scholar
  46. 46.
    de Bartolomeis, P., Tomassini, A.: On the Maslov index of Lagrangian submanifolds of generalized Calabi–Yau manifolds. Int. J. Math. 17(8), 921–947 (2006)MathSciNetCrossRefGoogle Scholar
  47. 47.
    de Bartolomeis, P., Tomassini, A.: Some results on generalized Calabi–Yau manifolds. Int. J. Geom. Methods Mod. Phys. 3(56), 12731292 (2006)MathSciNetzbMATHGoogle Scholar
  48. 48.
    de Bartolomeis, P., Tomassini, A.: On solvable generalized Calabi–Yau manifolds. Ann. Inst. Fourier (Grenoble) 56(5), 1281–1296 (2006)MathSciNetCrossRefGoogle Scholar
  49. 49.
    de Bartolomeis, P., Meylan, F.: Intrinsic deformation theory of CR structures. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9(3), 459–494 (2010)MathSciNetzbMATHGoogle Scholar
  50. 50.
    de Bartolomeis, P., Tomassini, A.: Exotic deformations of Calabi–Yau manifolds. Ann. Inst. Fourier (Grenoble) 63(2), 391–415 (2013)MathSciNetCrossRefGoogle Scholar
  51. 51.
    de Bartolomeis, P., Matveev, V.S.: Some remarks on Nijenhuis brackets, formality, and Kähler manifolds. Adv. Geom. 13(4), 571–581 (2013)MathSciNetCrossRefGoogle Scholar
  52. 52.
    de Bartolomeis, P., Iordan, A.: Deformations of Levi flat structures in smooth manifolds. Commun. Contemp. Math. 16(2), 13500151–135001537 (2014)MathSciNetCrossRefGoogle Scholar
  53. 53.
    de Bartolomeis, P., Iordan, A.: Deformations of Levi flat hypersurfaces in complex manifolds. Ann. Sci. Éc. Norm. Supér. (4) 48(2), 281–311 (2015)MathSciNetCrossRefGoogle Scholar
  54. 54.
    de Bartolomeis, P., Iordan, A.: Maurer–Cartan equation in the DGLA of graded derivations and non existence of Levi flat hypersurfaces in \({{\mathbf{CP}}_{2}}\). arXiv:1506.06732 (math.CV)

Copyright information

© Unione Matematica Italiana 2018

Authors and Affiliations

  1. 1.Università degli Studi di BolognaBolognaItaly

Personalised recommendations