Advertisement

Invariant scalar-flat Kähler metrics on \(\mathcal {O} (- \ell )\)

  • Paul GauduchonEmail author
Article
  • 23 Downloads

Abstract

This paper aims at giving a unified framework for a number of well-known extremal Kähler metrics with a big group of symmetries, with a special emphasis on the case of scalar-flat Kähler metrics, all stemming from the general construction of \(\mathrm{U} (m)\)-invariant extremal Kähler metrics on the space \(\mathbb {C}^m {\setminus } \{0\}\), based on the momentum profile introduced by Hwang and Singer (Trans Am Math Soc 354:2285–2325, 2002).

Keywords

Extremal Kähler metrics Toric manifolds Momentum profile Mass 

References

  1. 1.
    Abreu, M.: Kähler geometry of toric varieties and extremal metrics. Int. J. Math. 9, 641–651 (1998)CrossRefzbMATHGoogle Scholar
  2. 2.
    Apostolov, V., Calderbank, D.M.J., Gauduchon, P.: The geometry of weakly self-dual Kähler surfaces. Compos. Math. 135, 279–322 (2003)CrossRefzbMATHGoogle Scholar
  3. 3.
    Apostolov, V., Calderbank, D.M.J., Gauduchon, P., Tønnesen-Friedman, C.W.: Hamiltonian 2-forms in Kähler geometry, III: Extremal metrics and stability. Invent. math. 173, 547–601 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Arezzo, C., Pacard, F.: Blowing up and desingularizing constant scalar curvature Kähler menifolds. Acta Math. 196, 179–228 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Arezzo, C., Pacard, F.: Blowing up Kähler manifolds with constant scalar curvature II. Ann. Math. (2) 170(2), 685–738 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Arezzo, C., Pacard, F., Singer, M.: Extremal metrics on blow-ups. Duke Math. J. 157(1), 1–51 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Besse, A.L.: Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 10. Springer, Berlin (1987)Google Scholar
  8. 8.
    Burns, D.: Twistors and harmonic maps, AMS conference talk, Charlotte N. C., (1986) (unpublished)Google Scholar
  9. 9.
    Calabi, E.: Métriques kählériennes et fibrés holomorphes. Ann. Sci. Ec. Norm. Sup. Paris, 4ème série 12, 269–294 (1979)zbMATHGoogle Scholar
  10. 10.
    Calabi, E.: Extremal Kähler Metrics, in Seminar of Differential Geometry. In: Yau, S.-T. (ed.) Annals of Mathematics Studies, vol. 102, pp. 259–290. Princeton University Press, Princeton (1982)Google Scholar
  11. 11.
    Calabi, E.: Extremal Kähler metrics, II. In: Chavel, I., Farkas, H.M. (eds.) Differential Geometry and Complex Analysis, pp. 95–114. Springer, Berlin (1985)CrossRefGoogle Scholar
  12. 12.
    Chen, X.-X., LeBrun, C., Weber, B.: On conformally Kähler, Einstein manifolds. J. Am. Math. Soc. 21, 1137–1168 (2008)CrossRefzbMATHGoogle Scholar
  13. 13.
    Derdziński, A.: Self-dual Kähler manifolds and Einstein manifolds of dimension four. Compos. Math. 49, 405–433 (1983)zbMATHGoogle Scholar
  14. 14.
    Donaldson, S.K.: Kähler Geometry on Toric Manifolds, and Some Other Manifolds with Large Symmetry, Handbook of Geometric Analysis. No. 1 (2008), vol. 7, pp. 29–75. Adv. Lect. Math. (ALM). Int. Press, Somerville (2008)Google Scholar
  15. 15.
    Gauduchon, P.: Calabi’s extremal Kähler metrics: An elementary introduction (unpublished book in progress)Google Scholar
  16. 16.
    Guillemin, V.: Kähler metrics on toric varieties. J. Differ. Geom. 40(2), 285–309 (1994)CrossRefzbMATHGoogle Scholar
  17. 17.
    Guillemin, V.: Moment Maps and Combinatorial Invariants of Hamiltonian \(T^n\)-spaces, Progress in Mathematics, vol. 12. Birkhäuser (1994)Google Scholar
  18. 18.
    Hein, H.-J., LeBrun, C.: Mass in Kähler geometry. Commun. Math. Phys. 347(1), 183–221 (2016)CrossRefzbMATHGoogle Scholar
  19. 19.
    Hwang, A.D., Singer, M.A.: A momentum construction for circle-invariant Kähler metrics. Trans. Am. Math. Soc. 354, 2285–2325 (2002)CrossRefzbMATHGoogle Scholar
  20. 20.
    LeBrun, C.: Counter-examples to the generalized positive action conjecture. Commun. Math. Phys. 118, 591–596 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lebrun, C.: Einstein metrics on complex surfaces, in geometry and physics. In: Andersen, J.E., Dupont, J., Pedersen, H., Swann, A. (eds.) Lecture Notes in Pure and Applied Mathematics, vol. 184, pp. 167–176. Marcel Dekker (1997)Google Scholar
  22. 22.
    LeBrun, C.: On Einstein, Hermitian \(4\)-manifolds. J. Differ. Geom. 90, 277–302 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    LeBrun, C.: Einstein manifolds and extremal Kähler metrics. J. Reine Angew. Math. 678, 69–94 (2013)MathSciNetzbMATHGoogle Scholar
  24. 24.
    LeBrun, C.: Bach-flat Kähler surfaces. arXiv:1702.03840v1
  25. 25.
    Page, D.: A compact rotating gravitational instanton. Phys. Lett. 79B, 235–238 (1979)Google Scholar
  26. 26.
    Simanca, S.R.: Kähler metrics of constant scalar curvature on bundles over \(\mathbb{C} P_{n - 1}\). Math. Ann. 291(2), 239–246 (1991)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Székelyhidi, G.: An Introduction to Extremal Kähler Metrics, Graduate Studies in Mathematics, vol. 152. American Mathematical Society, Providence, Rhode IslandGoogle Scholar

Copyright information

© Unione Matematica Italiana 2018

Authors and Affiliations

  1. 1.CMLS, École Polytechnique, CNRSUniversité Paris-SaclayPalaiseauFrance

Personalised recommendations