Advertisement

On the Kummer construction for Kcsc metrics

  • Claudio ArezzoEmail author
  • Alberto Della Vedova
  • Riccardo Lena
  • Lorenzo Mazzieri
Article
  • 38 Downloads

Abstract

Given a compact constant scalar curvature Kähler orbifold, with nontrivial holomorphic vector fields, whose singularities admit a local ALE Kähler Ricci-flat resolution, we find sufficient conditions on the position of the singular points to ensure the existence of a global constant scalar curvature Kähler desingularization. We also give complete proofs of a number of analytic results which have been used in this context by various authors. A series of explicit examples is discussed.

Mathematics Subject Classification

58E11 32C17 

Notes

Acknowledgements

We wish to express our deep gratitude to Gavin Brown and Alexander Kasprzyk for their help in not drowning in the Fano toric threefolds world. The authors have been partially supported by the FIRB Project “Geometria Differenziale Complessa e Dinamica Olomorfa”.

References

  1. 1.
    Arezzo, C., Della Vedova, A., Mazzieri, L.: K-stability, Futaki invariants and cscK metrics on orbifold resolutions (2017). arXiv:1808.08420
  2. 2.
    Arezzo, C., Ghigi, A., Pirola, G.P.: Symmetries, quotients and Kähler-Einstein metrics. J. Reine Angew. Math. 591, 177–200 (2006)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Arezzo, C., Lena, R., Mazzieri, L.: On the resolution of extremal and constant scalar curvature Kähler orbifolds. Int. Math. Res. Not. 21, 6415–6452 (2016)CrossRefzbMATHGoogle Scholar
  4. 4.
    Arezzo, C., Pacard, F.: Blowing up and desingularizing constant scalar curvature Kähler manifolds. Acta Math. 196(2), 179–228 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Arezzo, C., Pacard, F.: Blowing up Kähler manifolds with constant scalar curvature. II. Ann. Math. (2) 170(2), 685–738 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Arezzo, C., Pacard, F., Singer, M.: Extremal metrics on blowups. Duke Math. J. 157(1), 1–51 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Calabi, E.: Extremal Khler Metrics. II. Differential Geometry and Complex Analysis, pp. 95–114. Springer, Berlin (1985)CrossRefGoogle Scholar
  8. 8.
    Conlon, R.J., Hein, H.-J.: Asymptotically conical Calabi–Yau manifolds. I’. Duke Math. J. 162(15), 2855–2902 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Brown, G., Kasprzyk, A.: http://www.grdb.co.uk (2015)
  10. 10.
    Brown, G., Kasprzyk, A.: Graded Ring Database (2013). http://grdb.lboro.ac.uk/
  11. 11.
    Calderbank, D.M.J., Singer, M.: Einstein metrics and complex singularities. Invent. Math. 156(2), 405–443 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Goto, R.: Calabi–Yau structures and Einstein–Sasakian structures on crepant resolutions of isolated singularities. J. Math. Soc. Jpn. 64, 1005–1052 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hein, H.-J., LeBrun, C.: Mass in Kähler geometry. Commun. Math. Phys. 347(1), 183–221 (2016)CrossRefzbMATHGoogle Scholar
  14. 14.
    Honda, N.: Deformation of LeBrun’s ALE metrics with negative mass. Commun. Math. Phys. 322(1), 127–148 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Joyce, D.: Compact Manifolds with Special Holonomy. Oxford Mathematical Monographs. Oxford University Press, Oxford (2000)Google Scholar
  16. 16.
    Kasprzyk, A.: Canonical toric Fano threefolds. Can. J. Math. 62(6), 1293–1309 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    LeBrun, C., Singer, M.: A Kummer-type construction of self-dual 4-manifolds. Math. Ann. 300, 165–180 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mazzieri, L.: Generalized connected sum construction for nonzero constant scalar curvature metrics. Commun. Partial Differ. Equ. 33, 1–17 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Mazzieri, L.: Generalized connected sum construction for scalar flat metrics. Manuscr. Math. 129, 137–168 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Mazzieri, L.: Generalized gluing for Einstein constraint equations. Calc. Var. Partial Differ. Equ. 34, 453–473 (2009)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Odaka, Y., Spotti, C., Sun, S.: Compact Moduli Spaces of Del Pezzo Surfaces and Kähler–Einstein Metrics (2015). arXiv:1210.0858 (to appear in J. Diff. Geom.)
  22. 22.
    Page, D.N.: A physical picture of the \(K3\) gravitational instanton. Phys. Lett. 80, 55–57 (1978)CrossRefGoogle Scholar
  23. 23.
    Pacard, F.: Lectures on connected sum constructions in geometry and nonlinear analysis. http://www.cmls.polytechnique.fr/perso/pacard.frank/Publications/Lecture-Part-I.pdf (2008)
  24. 24.
    Rollin, Y., Singer, M.: Non-minimal scalar-flat Kähler surfaces and parabolic stability. Invent. Math. 162(2), 235–270 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Székelyhidi, G.: Blowing up extremal Kähler manifolds II. Invent. Math. 200(3), 925–977 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Székelyhidi, G.: On blowing up extremal Kähler manifolds. Duke Math. J. 161(8), 1411–1453 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Tian, G.: On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math. 101, 101–172 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Topiwala, P.: A new proof of the existence of Kähler–Einstein metrics on \(K3\). I, II. Invent. Math. 89, 425–448 (1987) (449–454)Google Scholar
  29. 29.
    van Coevering, C.: Ricci-flat Kähler metrics on crepant resolutions of Kähler cones. Math. Ann. 347(3), 581–611 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Unione Matematica Italiana 2018

Authors and Affiliations

  1. 1.ICTP TriesteTriesteItaly
  2. 2.University of ParmaParmaItaly
  3. 3.Universitá di Milano BicoccaMilanItaly
  4. 4.Università di TrentoTrentoItaly
  5. 5.TriesteItaly

Personalised recommendations