Advertisement

Umgedrehter Unterricht – Flipped Classroom als Methode im Physikunterricht

  • Frank FinkenbergEmail author
  • Thomas Trefzger
Original Paper
  • 47 Downloads

Zusammenfassung

In der Unterrichtsmethode Flipped Classroom sind schulische und häusliche Aktivitäten vertauscht. Instruktionale Elemente werden in online verfügbare Lernvideos ausgelagert, welche die Schüler zur häuslichen Vorbereitung nutzen. Im Unterricht stehen schülerzentrierte Tätigkeiten im Vordergrund, in denen die Schüler ihr Wissen anwenden und vertiefen können.

Die vorliegende quasi-experimentelle Studie im Pre‑/Postdesign mit Kontrollgruppe untersucht die Wirkungen des Flipped Classroom in acht Physikkursen der Oberstufe mit N = 151 Schülern nach einem Treatment von drei Monaten. Die Forschungsfragen richteten sich sowohl auf die Leistung in einem Fachwissenstest als auch auf affektive Lernmerkmale wie die Motivation, das Interesse und das Selbstkonzept. Zusätzlich wurden die wahrgenommene Lehrerunterstützung und das Hausaufgabenverhalten untersucht.

Die Anwendung von Flipped Classroom im Physikunterricht zeigte größtenteils positive Effekte. Die Schüler im Flipped Classroom hatten einen höheren kognitiven Lernzuwachs und ein besseres Selbstkonzept als ihre Mitschüler, die traditionell unterrichtet wurden. Das Leistungsniveau und das Geschlecht der Schüler hatten dabei keinen Einfluss auf diese Effekte. Während die Motivation, sich mit Physik zu beschäftigen, in der Kontrollgruppe sank, blieb sie in der Treatmentgruppe auf konstantem Niveau. Bei genauerem Blick zeigte sich, dass die Motivation bei den Mädchen im Flipped Classroom anstieg, bei Mädchen im traditionellen Unterricht jedoch abnahm. Das Interesse am Unterrichtsfach Physik wurde in beiden Gruppen geringer. Sowohl die wahrgenommene Lehrerunterstützung als auch die Hausaufgabendauer blieben in beiden Gruppen zwischen Pre- und Posttest unverändert. Die Hausaufgabendisziplin war im Flipped Classroom jedoch deutlich höher, was zeigt, dass die Schüler eher bereit waren, sich instruktionale Lernvideos anzusehen als klassische Hausaufgaben zu bearbeiten.

Schlüsselwörter

Schüleraktivierung Lernvideos Vergleichsstudie Leistung Motivation Interesse 

Flipped Classroom as Teaching Method in Physics School Education

Abstract

Flipped Classroom inverts traditional teaching methods by delivering direct instruction in online learning videos. The students watch the videos at home so that class time is freed up for student centered and collaborative activities that allow a deeper exploration of the content.

The quasi-experimental pre/post-study with control group examined the effects of flipped classroom applied to eight basic physics courses at two German secondary schools with N = 151 students in a three-months-treatment. The research questions focused on the performance in a content knowledge test as well as non-cognitive attitudes such as motivation, interest and self-concept. In addition, perceived teacher support and homework habits were also evaluated.

Applying flipped classroom in physics school education showed largely positive results. The students in flipped classroom had a higher gain in cognitive learning and a better self-concept than those in a traditional classroom setting. Physics aptitude as well as gender did not moderate these effects. Whereas the motivation to engage in physics declined in the control group, it remained unchanged in the treatment group. In particular, female students in flipped classroom developed a higher motivation to engage in physics than their female peers who lost motivation in the traditional classroom. The interest in physics as a school subject decreased in both groups. The perceived teacher support and the average length of homework stayed the same in both groups between pre- and post-test. However, the homework discipline was considerably higher in flipped classroom which showed that students were more likely to watch instructional videos than do traditional homework.

Keywords

Active learning Explanatory videos Comparative study Performance Motivation Interest 

Literatur

  1. Abeysekera, L., & Dawson, P. (2015). Motivation and cognitive load in the flipped classroom: definition, rationale and a call for research. Higher Education Research & Development, 34(1), 1–14.Google Scholar
  2. Ash, K. (2012). Educators evaluate flipped classrooms. Education Week, 32(2), s6.Google Scholar
  3. Asiksoy, G., & Özdamli, F. (2016). Flipped classroom adapted to the ARCS model of motivation and applied to a physics course. Eurasia Journal of Mathematics, Science & Technology Education, 12(6), 1589–1603.Google Scholar
  4. Atwa, Z. M., Din, R., & Hussin, M. (2017). Effectiveness of flipped learning in physics education on Palestinian high school students’ achievement. Journal of Personalized Learning, 2(1), 73–85.Google Scholar
  5. Bates, S., & Galloway, R. (2012). The inverted classroom in a large enrolment introductory physics course: a case study. Proceedings of the HEA STEM learning and teaching conference.Google Scholar
  6. Bell, M. R. (2015). An investigation of the impact of a flipped classroom instructional approach on high school students’ content knowledge and attitudes toward the learning environment. Provo: Brigham Young University.Google Scholar
  7. Bergmann, J., & Sams, A. (2012). Flip your classroom: reach every student in every class every day. Eugene: International Society for Technology in Education.Google Scholar
  8. Bhagat, K. K., Chang, C.-N., & Chang, C.-Y. (2016). The impact of the flipped classroom on mathematics concept learning in high school. Educational Technology & Society, 19(3), 134–142.Google Scholar
  9. Bishop, J. L. (2013). A controlled study of the flipped classroom with numerical methods for engineers (S. 3606852). Utah State University: ProQuest Dissertations Publishing.Google Scholar
  10. Bishop, J. L., & Verleger, M. A. (2013). The flipped classroom: a survey of the research. ASEE National Conference Proceedings, 30(9), 1–18.Google Scholar
  11. Bormann, J. (2014). Affordances of flipped learning and its effects on student engagement and achievement, University of Northern Iowa. https://pdfs.semanticscholar.org/f813/d76360937858e808ef9028c4709ee9b68d9e.pdf. Zugegriffen: 17. Apr. 2019.Google Scholar
  12. Brame, C. J. (2013). Flipping the classroom, Vanderbilt University Center for Teaching. https://cft.vanderbilt.edu/guides-sub-pages/flipping-the-classroom. Zugegriffen: 17. Apr. 2019.Google Scholar
  13. Butt, A. (2014). Student views on the use of a flipped classroom approach: evidence from Australia. Business Education & Accreditation, 6(1), 33.Google Scholar
  14. Casasola, T., et al. (2017). Can flipping the classroom work? Evidence from undergraduate chemistry. International Journal of Teaching and Learning in Higher Education, 29(3), 421–435.Google Scholar
  15. Clark, K. R. (2015). The effects of the flipped model of instruction on student engagement and performance in the secondary mathematics classroom. Journal of Educators Online, 12(1), 91–115.Google Scholar
  16. Clark, R. E. (1983). Reconsidering research on learning from media. Review of Educational Research, 53(4), 445–459.Google Scholar
  17. Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Mahwah: Lawrence Earlbaum Associates.Google Scholar
  18. Daniels, Z. (2008). Entwicklung schulischer Interessen im Jugendalter. Münster: Waxman.Google Scholar
  19. Deci, E., & Ryan, R. (2002). An overview of self-determination theory: An organismic-dialectical perspective. In E. Deci & R. Ryan (Hrsg.), Handbook of Self-Determination Research (S. 3–33). Rochester: University of Rochester Press.Google Scholar
  20. Demski, J. (2013). 6 expert tips for flipping the classroom. Campus Technology, 26(5), 32–37.Google Scholar
  21. Deslauriers, L., Schelew, E., & Wieman, C. (2011). Improved learning in a large-enrollment physics class. Science, 332(6031), 862–864.Google Scholar
  22. Eid, M., Gollwitzer, M., & Schmitt, M. (2010). Statistik und Forschungsmethoden. Weinheim: Beltz.Google Scholar
  23. Enfield, J. (2013). Looking at the impact of the flipped classroom model of instruction on undergraduate multimedia students at CSUN. TechTrends, 57(6), 14–27.Google Scholar
  24. Estes, M. D., Ingram, R., & Liu, J. C. (2014). A review of flipped classroom research, practice, and technologies. International HETL Review, 4(7), 1–8.Google Scholar
  25. Fähnrich, F., & Thein, C. (2018). Flip the classroom. http://www.fliptheclassroom.de/. Zugegriffen: 17. Apr. 2019.Google Scholar
  26. Fautch, J. M. (2015). The flipped classroom for teaching organic chemistry in small classes: is it effective? Chemistry Education Research and Practice, 16(1), 179–186.Google Scholar
  27. Findlay-Thompson, S., & Mombourquette, P. (2014). Evaluation of a flipped classroom in an undergraduate business course. Business Education & Accreditation, 6(1), 63–71.Google Scholar
  28. Finkenberg, F. (2018). Flipped Classroom im Physikunterricht. Berlin: Logos.  https://doi.org/10.30819/4737.Google Scholar
  29. Gilboy, M. B., Heinerichs, S., & Pazzaglia, G. (2015). Enhancing student engagement using the flipped classroom. Journal of Nutrition Education and Behavior, 47(1), 109–114.Google Scholar
  30. Gillette, C., et al. (2018). A systematic review and meta analysis of student pharmacist outcomes comparing flipped classroom and lecture. American Journal of Pharmaceutical Education.  https://doi.org/10.5688/ajpe6898.Google Scholar
  31. Goerres, A., Kärger, C., & Lambach, D. (2015). Aktives Lernen in der Massenveranstaltung: Flipped-Classroom-Lehre als Alternative zur klassischen Vorlesung in der Politikwissenschaft. Zeitschrift für Politikwissenschaft, 25(1), 135–152.Google Scholar
  32. González-Gómez, D., et al. (2016). Performance and perception in the flipped learning model: an initial approach to evaluate the effectiveness of a new teaching methodology in a general science classroom. Journal of Science Education and Technology, 25(3), 450–459.Google Scholar
  33. Greenberg, B., Medlock, L., & Stephens, D. (2011). Blend my learning: lessons learned from a blended learning pilot. https://blendmylearning.files.wordpress.com/2011/12/lessons-learned-from-a-blended-learning-pilot4.pdf. Zugegriffen: 17. Apr. 2019.Google Scholar
  34. Gregorius, R. M. (2017). Performance of underprepared students in traditional versus animation-based flipped-classroom settings. Chemistry Education Research and Practice, 18(4), 841–848.Google Scholar
  35. Guo, P. J., Kim, J., & Rubin, R. (2014). How video production affects student engagement: an empirical study of MOOC videos. In Proceedings of the first ACM conference on Learning@ scale (S. 41–50).Google Scholar
  36. Hake, R. R. (1998). Interactive-engagement versus traditional methods: a six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66(1), 64–74.Google Scholar
  37. Hannover, B., & Kessels, U. (2001). Monoedukativer Anfangsunterricht in Physik in der Gesamtschule. Auswirkungen auf Motivation, Selbstkonzept und Einteilung in Grund-und Fortgeschrittenenkurse. Zeitschrift für Entwicklungspsychologie und Pädagogische Theorie, 34, 201–215.Google Scholar
  38. Hao, Y. (2016). Middle school students’ flipped learning readiness in foreign language classrooms: exploring its relationship with personal characteristics and individual circumstances. Computers in Human Behavior, 59, 295–303.Google Scholar
  39. Häussler, P., & Hoffmann, L. (1995). Physikunterricht—an den Interessen von Mädchen und Jungen orientiert. Unterrichtswissenschaft, 23(2), 107–126.Google Scholar
  40. Häussler, P., & Hoffmann, L. (1998). Chancengleichheit für Mädchen im Physikunterricht. Ergebnisse eines erweiterten BLK-Modellversuchs. Zeitschrift für Didaktik der Naturwissenschaften, 1, 51–67.Google Scholar
  41. Herbst, M., Fürtbauer, E. M., & Strahl, A. (2016). Interesse an Physik – in Salzburg. PhyDid B‑Didaktik der Physik-Beiträge zur DPG-Frühjahrstagung.Google Scholar
  42. Herzog, W. (1996). Motivation und naturwissenschaftliche Bildung. Kriterien eines „mädchengerechten“ koedukativen Unterrichts. Neue Sammlung, 36, 61–91.Google Scholar
  43. Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest development. Educational psychologist, 41(2), 111–127.Google Scholar
  44. Hoffmann, L., Häußler, P., & Lehrke, M. (1998). Die IPN-Interessenstudie. Kiel: IPN.Google Scholar
  45. Jensen, J. L., Kummer, T. A., & dM Godoy, P. D. (2015). Improvements from a flipped classroom may simply be the fruits of active learning. CBE-Life Sciences Education, 14(1), 1–12.Google Scholar
  46. Johnson, L., & Renner, J. (2012). Effect of the flipped classroom model on secondary computer applications course: student and teacher perceptions, questions and student achievement. Louisville: University of Louisville.Google Scholar
  47. Kleickmann, T. (2011). Was passiert mit dem Interesse an Physik im Übergang von der Primar-in die Sekundarstufe? In D. Kucharz, T. Irion & B. Reinhoffer (Hrsg.), Grundlegende Bildung ohne Brüche (S. 219–222). Wiesbaden: VS.Google Scholar
  48. Krapp, A., & Prenzel, M. (2011). Research on interest in science: theories, methods, and findings. International journal of science education, 33(1), 27–50.Google Scholar
  49. Kuechler, W. L., & Simkin, M. G. (2010). Why is performance on multiple-choice tests and constructed-response tests not more closely related? Theory and an empirical test. Decision Sciences Journal of Innovative Education, 8(1), 55–73.Google Scholar
  50. Kuhn, J. (2014). Mehrebenenanalyse am Beispiel der Lernwirkung von Aufgaben. In D. Krüger, I. Parchmann & H. Schecker (Hrsg.), Methoden in der naturwissenschaftsdidaktischen Forschung (S. 297–310). Berlin Heidelberg: Springer.Google Scholar
  51. Lape, N. K., et al. (2014). Probing the inverted classroom: a controlled study of teaching and learning outcomes in undergraduate engineering and mathematics. 121st ASEE Annual Conference & Expositions. Paper ID 9475.Google Scholar
  52. Lee, G., & Wallace, A. (2018). Flipped learning in the English as a foreign language classroom: outcomes and perceptions. TESOL Quarterly, 52(1), 62–84.Google Scholar
  53. Leibniz-Institut für Wissenschaftsmedien (2017). Inverted Classroom. https://www.e-teaching.org/lehrszenarien/vorlesung/inverted_classroom. Zugegriffen: 17. Apr. 2019.Google Scholar
  54. Lewis, C. E., Chen, D. C., & Relan, A. (2018). Implementation of a flipped classroom approach to promote active learning in the third-year surgery clerkship. The American Journal of Surgery, 215(2), 298–303.Google Scholar
  55. Lin, P.-C., & Chen, H.-M. (2016). The effects of flipped classroom on learning effectiveness: using learning satisfaction as the mediator. World Transactions on Engineering and Technology Education, 14(2), 231–244.Google Scholar
  56. Lo, C. K., & Hew, K. F. (2017). Using „first principles of instructions“ to design secondary school mathematics flipped classroom: the findings of two exploratory studies. Educational Technology & Society, 20(1), 222–236.Google Scholar
  57. Lyman, F. T. (1981). The responsive classroom discussion: the inclusion of all students. Mainstreaming digest, 109, 113.Google Scholar
  58. Marlowe, C. (2012). The effect of the flipped classroom on student achievement and stress. Bozeman: Montana State University.Google Scholar
  59. Mayer, R. E. (2014). Cognitive theory of multimedia learning. In R. E. Mayer (Hrsg.), The cambridge handbook of multimedia learning (S. 43–71). Cambridge: Cambridge University Press.Google Scholar
  60. Mazur, E. (2014). Peer instruction: a user’s manual. New York: Pearson.Google Scholar
  61. Meyer, H. (2016). Was ist guter Unterricht? Berlin: Cornelson Scriptor.Google Scholar
  62. Munson, A., & Pierce, R. (2015). Flipping content to improve student examination performance in a pharmacogenomics course. American journal of pharmaceutical education, 79(7), 103.Google Scholar
  63. OECD (2016). PISA 2015 assessment and analytical framework: science, reading, mathematic and financial literacy. Paris: OECD publishing.Google Scholar
  64. O’Flaherty, J., & Phillips, C. (2015). The use of flipped classrooms in higher education: a scoping review. The Internet and Higher Education, 25, 85–95.Google Scholar
  65. Prenzel, M., et al. (2007). PISA 2006: Die Ergebnisse der dritten internationalen Vergleichsstudie. Münster: Waxmann.Google Scholar
  66. Robinson, S., et al. (2015). Effectiveness of flipped classroom techniques in an advanced laboratory physics course. In M. Eblen-Zayas, E. Behringer & J. Kozminski (Hrsg.), Proceedings of the Conference on Laboratory Instruction BFY 2015 (S. 92–95).  https://doi.org/10.1119/bfy.2015.pr.023.Google Scholar
  67. Roehl, A., Reddy, S. L., & Shannon, G. J. (2013). The flipped classroom: an opportunity to engage millennial students through active learning. Journal of Family and Consumer Sciences, 105(2), 44.Google Scholar
  68. Rost, D. H., Sparfeldt, J. R., & Schilling, S. R. (2006). Hochbegabung. In K. Schweizer (Hrsg.), Leistung und Leistungsdiagnostik (S. 187–222). Berlin Heidelberg: Springer.Google Scholar
  69. Ryan, M. D., & Reid, S. A. (2015). Impact of the flipped classroom on student performance and retention: a parallel controlled study in general chemistry. Journal of Chemical Education, 93(1), 13–23.Google Scholar
  70. Sadaghiani, H. R. (2012). Online prelectures: an alternative to textbook reading assignments. The Physics Teacher, 50(5), 301–303.Google Scholar
  71. Schiefele, U., & Schreyer, I. (1994). Intrinsische Lernmotivation und Lernen. Ein Überblick zu Ergebnissen der Forschung. Zeitschrift für Pädagogische Psychologie, 8(1), 1–13.Google Scholar
  72. Schiepe-Tiska, A., et al. (2016). Naturwissenschaftliche Kompetenz in PISA 2015 - Ergebnisse des internationalen Vergleichs mit einem modifizierten Testansatz. In K. Reiss, et al. (Hrsg.), PISA 2015. Eine Studie zwischen Kontinuität und Innovation (S. 45–98). Münster: Waxmann.Google Scholar
  73. Schmidt, S. (2018). Mein Flipped Classroom. https://www.flippedmathe.de/mein-flipped-classroom. Zugegriffen: 17. Apr. 2019.Google Scholar
  74. Schultz, D., et al. (2014). Effects of the flipped classroom model on student performance for advanced placement high school chemistry students. Journal of Chemical Education, 91(9), 1334–1339.Google Scholar
  75. Sengel, E. (2016). To FLIP or not to FLIP: comparative case study in higher education in Turkey. Computers in Human Behavior, 64, 547–555.Google Scholar
  76. van Sickle, J. (2016). Discrepancies between student perception and achievement of learning outcomes in a flipped classroom. Journal of the Scholarship of Teaching and Learning, 16(2), 29–38.Google Scholar
  77. Slavin, R. E. (1995). A model of effective instruction. The Educational Forum, 59, 166–176.Google Scholar
  78. Stanat, P. (2005). Jungen und Mädchen in der Laborschule. Empirische Befunde zu Geschlechterunterschieden. In R. Watermann, et al. (Hrsg.), Die Laborschule im Spiegel ihre PISA-Ergebnisse. Weinheim: Juventa.Google Scholar
  79. Stoll, S. (2018). 180Grad-Flip. https://www.180grad-flip.de. Zugegriffen: 17. Apr. 2019.Google Scholar
  80. Sun, J. C.-Y., & Wu, Y.-T. (2016). Analysis of learning achievement and teacher-student interactions in flipped and conventional classrooms. The International Review of Research in Open and Distributed Learning, 17(1), 79–99.Google Scholar
  81. Sun, J. C.-Y., Wu, Y.-T., & Lee, W.-I. (2017). The effect of the flipped classroom approach to OpenCourseWare instruction on students’ self-regulation. British Journal of Educational Technology, 48(3), 713–729.Google Scholar
  82. Tesch, M., & Duit, R. (2004). Experimentieren im Physikunterricht – Ergebnisse einer Videostudie. Zeitschrift für Didaktik der Naturwissenschaften, 10(10), 51–69.Google Scholar
  83. Thai, N. T. T., De Wever, B., & Valcke, M. (2017). The impact of a flipped classroom design on learning performance in higher education: looking for the best “blend” of lectures and guiding questions with feedback. Computers & Education, 107, 113–126.Google Scholar
  84. Valentine, D. B., & Cooper, H. (2004). The relation between self-beliefs and academic achievement: a meta-analytic review. Educational Psychologist, 39(2), 111–133.Google Scholar
  85. Walper, L. M. (2017). Entwicklung der physikbezogenen Interessen und selbstbezogenen Kognitionen von Schülerinnen und Schülern in der Übergangsphase von der Primar- in die Sekundarstufe. Eine Längsschnittanalyse vom vierten bis zum siebten Schuljahr. Berlin: Logos.Google Scholar
  86. Weber, T. (2003). Kumulatives Lernen im Physikunterricht. Eine vergleichende Untersuchung in Unterrichtsgängen zur geometrischen Optik. Berlin: Logos.Google Scholar
  87. Winkelmann, J. (2013). Auswirkungen auf den Fachwissenszuwachs und auf affektive Schülermerkmale durch Schüler- und Demonstrationsexperimente im Physikunterricht. Berlin: Logos.Google Scholar
  88. Winter, J. B. (2013). The effect of the flipped classroom model on achievement in an introductory college physics course. Starville: Mississippi State University.Google Scholar
  89. Wodzinski, R. (2007). Physikdidaktik in der Praxis. In E. Kircher & W. Schneider (Hrsg.), Physikdidaktik in der Praxis (S. 559–580). Berlin Heidelberg: Springer.Google Scholar
  90. Wolters, C. A., & Pintrich, P. R. (1998). Contextual differences in student motivation and self-regulated learning in mathematics, English, and social studies classrooms. Instructional Science, 26(1), 27–47.Google Scholar
  91. Wong, K., & Chu, D. W. (2014). Is the flipped classroom model effective in the perspectives of students’ perceptions and benefits? In S. K. S. Cheung, et al. (Hrsg.), Hybrid learning. Theory and practice. ICHL 2014. Lecture notes in computer science, (Bd. 8595, S. 93–104). https://doi.org/10.1007/978–3–319–08961–4_10.Google Scholar
  92. Yildrim, F. S., & Kiray, S. A. (2016). Flipped classroom model in education. In W. Wu, S. Alan & M. T. Hebebci (Hrsg.), Research Highlights in Education and Science 2016 (S. 2–8).Google Scholar
  93. Zheng, W., Becker, T., & Ding, X. (2014). The effects of “flipped classroom” concept on the effectiveness of teaching. Proceedings of 2014 of the ASEE North Midwest Section Conference.  https://doi.org/10.17077/aseenmw2014.1019.Google Scholar
  94. Zimmerman, B. J., & Martinez-Pons, M. (1990). Student differences in self-regulated learning: relating grade, sex, and giftedness to self-efficacy and strategy use. Journal of educational Psychology, 82(1), 51.Google Scholar
  95. Zoe, H., et al. (2014). Role of face-to-face lecturing in large enrollment physics classes. arXiv preprint arXiv:1404.3566.Google Scholar

Copyright information

© Gesellschaft für Didaktik der Physik und Chemie (GDCP), Fachsektion Didaktik der Biologie im VBIO (FDdB im VBIO) und Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Lehrstuhl für Physik und ihre DidaktikUniversität WürzburgWürzburgDeutschland

Personalised recommendations