Advertisement

Zeitschrift für Didaktik der Naturwissenschaften

, Volume 24, Issue 1, pp 201–216 | Cite as

Identitätskonstruktionen von Kindern und Jugendlichen in Bezug auf Physik – Das Identitätskonstrukt als Analyseperspektive für die Physikdidaktik?

  • Thorid RabeEmail author
  • Olaf Krey
Original Paper
  • 158 Downloads

Zusammenfassung

Bildungswegentscheidungen zur Physik werden aus gesellschaftlicher, aber auch physikdidaktischer Sicht als Problemfeld wahrgenommen, da Kinder, Jugendliche und Erwachsene diesen Bereich zu selten anstreben. Bisher etablierte Forschungszugänge z. B. auf Grundlage des Erwartungs-mal-Wert-Modells helfen, das Problem zu beschreiben, nicht aber es zu verstehen oder gar zu lösen. Die Frage, ob das Identitätskonstrukt für die Physikdidaktik als eine bereichernde Analyseperspektive dienen kann, steht im Mittelpunkt des Artikels. Bei den Bildungswegentscheidungen handelt es sich sowohl um innerschulische Entscheidungen zum Fach Physik als auch um Wahlprozesse zu physikbezogenen Ausbildungen und Studiengängen. Das Konstrukt Identität wird in einer ersten Annäherung vorgestellt und ins Verhältnis gesetzt zu weiteren, auch in physikdidaktischen Forschungsprojekten gängigen Konstrukten. Die Vorstellung des internationalen Forschungsstandes zeigt, dass sich Bildungswegentscheidungen sinnvoll als Identitätsaushandlungen auffassen lassen und so ihr prozessoraler und vielschichtiger Charakter zutage treten kann. Der Zugang zu Bildungswegentscheidungen über das Konstrukt der Identität, so wird argumentiert, ist ein Desiderat für die physikdidaktische Forschungslandschaft im deutschsprachigen Raum, wo insbesondere für den Übergang in den Physikunterricht im Rahmen des Anfangsunterrichts oder den Übergang in die Sekundarstufe II die Identitätsperspektive fruchtbar gemacht werden könnte.

Schlüsselwörter

Identität Studienwahl Berufswahl Identitätsarbeit 

Identity constructions related to physics—The identity construct as an analytic lens for physics education research?

Abstract

Educational choices with respect to physics seem to be problematic from a socio-economic perspective as well as from a physics education point of view, since children, adolescents, and adults too often turn away from physics in their educational careers. Established research approaches strongly rely on models like e. g. the expectancy-value-theory that help to describe the problem, but not to gain a deeper understanding or to solve it. This articles addresses the question if the construct of identity might enrich the perspectives on students’ choices. These educational choices emerge both during schooltime concerning physics as a subject and later on when the question arises which study course or educational program to choose.

We will introduce the identity construct and analyze its relation to closely linked constructs that are well established in physics education research. We report international research giving strong hints that educational choices can be understood as identity negotiation, which allows to access the process character and the complexity of educational choices. We argue that the use of the identity perspective is a desideratum for research in the German speaking physics education community. Identity could be an inspiring lens through which to look at educational transition phases and help to better understand e. g. identity work at the beginning of physics education in early grades and as well as course choices in favor of or against physics in upper secondary education.

Keywords

Identity Educational choices Career choice Identity negotiation 

Literatur

  1. Ajzen, I. (2001). Nature and operation of attitudes. Annual Review of Psychology, 52, 27–58.CrossRefGoogle Scholar
  2. Albrecht, A., & Nordmeier, V. (2011). Erfolgreicher Studieneinstieg in Physik – alles eine Frage der Motivation? In V. Nordmeier & H. Grötzebauch (Hrsg.), PhyDid B, Didaktik der Physik, Beiträge zur DPG-Frühjahrstagung (S. 1–6).Google Scholar
  3. Allegrini, A. (2015). Gender, STEM studies and educational choices. Insights from feminist perspectives. In E. K. Henriksen, J. Dillon & J. Ryder (Hrsg.), Understanding student participation and choice in science and technology education (S. 43–59). Dordrecht, Heidelberg, New York, London: Springer.Google Scholar
  4. Amettler, J., & Ryder, J. (2015). The impact of science curriculum content in students’ subject choices in post-compulsary schooling. In E. K. Henriksen, J. Dillon & J. Ryder (Hrsg.), Understanding student participation and choice in science and technology education (S. 103–118). Dordrecht, Heidelberg, New York, London: Springer.Google Scholar
  5. Archer, L., & DeWitt, J. (2015). Science aspirations and gender identity: lessons from the ASPIRES project. In E. K. Henriksen, J. Dillon & J. Ryder (Hrsg.), Understanding student participation and choice in science and technology education (S. 89–102). Dordrecht, Heidelberg, New York, London: Springer.Google Scholar
  6. Archer, L., & DeWitt, J. (2017). Understanding young people’s science aspirations. How students form ideas about “becoming a scientist.”. New York: Routledge.Google Scholar
  7. Archer, L., DeWitt, J., Osborne, J., Dillon, J., Willis, B., & Wong, B. (2010). “Doing” science versus “being” a scientist: examining 10/11-year-old schoolchildren’s constructions of science through the lens of identity. Science Education, 94(4), 617–639.  https://doi.org/10.1002/sce.20399.CrossRefGoogle Scholar
  8. Archer, L., DeWitt, J., Osborne, J., Dillon, J., Willis, B., & Wong, B. (2013). “Not girly, not sexy, not glamorous”: primary school girls’ and parents’ constructions of science aspirations 1. Pedagogy, Culture und Society, 21(1), 171–194.  https://doi.org/10.1080/14681366.2012.748676.CrossRefGoogle Scholar
  9. Arens, A. K., Trautwein, U., & Hasselhorn, M. (2011). Erfassung des Selbstkonzepts im mittleren Kindesalter: Validierung einer deutschen Version des SDQ I. Zeitschrift für Pädagogische Psychologie, 25(2), 131–144.  https://doi.org/10.1024/1010-0652/a000030.CrossRefGoogle Scholar
  10. Bandura, A. (1997). Self-efficacy. The exercise of control. New York: W.H. Freeman.Google Scholar
  11. Barmby, P., Kind, P., & Jones, K. (2008). Examining changing attitudes in secondary school science. International Journal of Science Education, 30(8), 1075–1093.  https://doi.org/10.1080/09500690701344966.CrossRefGoogle Scholar
  12. Bartosch, I. (2013). Entwicklung weiblicher Geschlechtsidentität und Lernen von Physik – ein Widerspruch? Münster: Waxmann.Google Scholar
  13. Bennett, J., & Hogarth, S. (2009). Would you want to talk to a scientist at a party? High school students’ attitudes to school science and to science. International Journal of Science Education, 31(14), 1975–1998.  https://doi.org/10.1080/09500690802425581.CrossRefGoogle Scholar
  14. Bennett, J., Lubben, F., & Hampden-Thompson, G. (2013). Schools that make a difference to post-compulsory uptake of physical science subjects: some comparative case studies in England. International Journal of Science Education, 35(4), 663–689.  https://doi.org/10.1080/09500693.2011.641131.CrossRefGoogle Scholar
  15. Bøe, M. V., & Henriksen, E. K. (2015). Expectancy-value perspectives on choice of science and technology education in late-modern-societies. In E. K. Henriksen, J. Dillon & J. Ryder (Hrsg.), Understanding student participation and choice in science and technology education (S. 17–29). Dordrecht: Springer.Google Scholar
  16. Bøe, M. V., Henriksen, E. K., Lyons, T., & Schreiner, C. (2011). Participation in science and technology: young people’s achievement-related choices in late-modern societies. Studies in Science Education, 47(1), 37–72.  https://doi.org/10.1080/03057267.2011.549621.CrossRefGoogle Scholar
  17. Brickhouse, N. W. (2001). Embodying science: a feminist perspective on learning. Journal of Research in Science Teaching, 38(3), 282–295. https://doi.org/10.1002/1098-2736(200103)38:3〈282::AID-TEA1006〉3.0.CO;2-0.CrossRefGoogle Scholar
  18. Brickhouse, N. W., Lowery, P., & Schultz, K. (2000). What kind of girl does science? The construction of school science identities. Journal of Research in Science Teaching, 37(5), 441–458. https://doi.org/10.1002/(SICI)1098-2736(200005)37:5〈441::AID-TEA4〉3.0.CO;2-3.CrossRefGoogle Scholar
  19. Brooks, R. (2003). Discussing higher education choices: differences and difficulties. Research Papers in Education, 18(3), 237–258.  https://doi.org/10.1080/0267152032000107310.CrossRefGoogle Scholar
  20. Brotman, J. S., & Moore, F. M. (2008). Girls and science: a review of four themes in the science education literature. Journal of Research in Science Teaching, 45(9), 971–1002.  https://doi.org/10.1002/tea.20241.CrossRefGoogle Scholar
  21. Carlone, H. B. (2004). The cultural production of science in reform-based physics: girls’ access, participation, and resistance. Journal of Research in Science Teaching, 41(4), 392–414.  https://doi.org/10.1002/tea.20006.CrossRefGoogle Scholar
  22. Carlone, H., Cook, M., Wong, J., Sandoval, W. A., Calabrese, B. A., Tan, E., & Brickhouse, N. (2008). Seeing and supporting identity development in science education. ICLS’08 Proceedings of the 8th International Conference on International Conference for the Learning Sciences. Bd. 3 (S. 214–220). Retrieved from http://dl.acm.org/citation.cfm?id=1600020 Google Scholar
  23. Carlone, H. B., Scott, C. M., & Lowder, C. (2014). Becoming (less) scientific: a longitudinal study of students’ identity work from elementary to middle school science. Journal of Research in Science Teaching, 51(7), 836–869.CrossRefGoogle Scholar
  24. Cleaves, A. (2005). The formation of science choices in secondary school. International Journal of Science Education, 27(4), 471–486.  https://doi.org/10.1080/0950069042000323746.CrossRefGoogle Scholar
  25. DeWitt, J., Archer, L., & Osborne, J. (2013). Nerdy, brainy and normal: children’s and parents’ constructions of those who are highly engaged with science. Research in Science Education, 43(4), 1455–1476.  https://doi.org/10.1007/s11165-012-9315-0.CrossRefGoogle Scholar
  26. DeWitt, J., Archer, L., & Osborne, J. (2014). Science-related aspirations across the primary–secondary divide: evidence from two surveys in england. International Journal of Science Education, 36(10), 1609–1629.CrossRefGoogle Scholar
  27. Düchs, G., & Ingold, G.-L. (2017). Physik hält Kurs. Statistiken zum Physikstudium an den Universitäten in Deutschland 2017. Physik Journal, 16(8/9), 28–33.Google Scholar
  28. Eccles, J. S., & Wigfield, A. (2002). Motivational beliefs, values, and goals. Annual Review of Psychology, 53, 109–132.CrossRefGoogle Scholar
  29. Haak, I. (2017). Maßnahmen zur Unterstützung kognitiver und metakognitiver Prozesse in der Studieneingangsphase. Berlin: Logos.Google Scholar
  30. Hannover, B., & Kessels, U. (2004). Self-to-prototype matching as a strategy for making academic choices. Why high school students do not like math and science. Learning and Instruction, 14(1), 51–67.  https://doi.org/10.1016/j.learninstruc.2003.10.002.CrossRefGoogle Scholar
  31. Häußler, P., & Hoffmann, L. (1995). Physikunterricht – an den Interessen von Mädchen und Jungen orientiert. Unterrichtswissenschaft, 23(2), 107–126.Google Scholar
  32. Hazari, Z., Sonnert, G., Sadler, P. M., & Shanahan, M.-C. (2010). Connecting high school physics experiences, outcome expectations, physics identity, and physics career choice: a gender study. Journal of Research in Science Teaching.  https://doi.org/10.1002/tea.20363.CrossRefGoogle Scholar
  33. Heise, H., Sinzinger, M., Struck, Y., & Wodzinski, R. (2014). DPG-Studie zur Unterrichtsversorgung im Fach Physik und zum Wahlverhalten der Schülerinnen und Schüler im Hinblick auf das Fach. Bad Honnef: Deutsche Physikalische Gesellschaft.Google Scholar
  34. Hoffmann, L., & Lehrke, M. (1986). Eine Untersuchung über Schülerinteressen an Physik und Technik. Zeitschrift für Pädagogik, 32(2), 189–204.Google Scholar
  35. Holmegaard, H. T., Madsen, L. M., & Ulriksen, L. (2012a). To choose or not to choose science: constructions of desirable identities among young people considering a STEM higher education programme. International Journal of Science Education, 1–30.  https://doi.org/10.1080/09500693.2012.749362.CrossRefGoogle Scholar
  36. Holmegaard, H. T., Ulriksen, L. M., & Madsen, L. M. (2012b). The process of choosing what to study: a longitudinal study of upper secondary students’ identity work when choosing higher education. Scandinavian Journal of Educational Research, 1–20.  https://doi.org/10.1080/00313831.2012.696212.CrossRefGoogle Scholar
  37. Holmegaard, H. T., Ulriksen, L., & Madsen, L. M. (2015). A narrative approach to understand students’ identities and choices. In E. K. Henriksen, J. Dillon & J. Ryder (Hrsg.), Understanding student participation and choice in science and technology education (S. 31–42). Dordrecht, Heidelberg, New York, London: Springer.Google Scholar
  38. Hsu, P.-L., Roth, W.-M., Marshall, A., & Guenette, F. (2009). To be or not to be? Discursive resources for (dis-)identifying with science-related careers. Journal of Research in Science Teaching, 46(10), 1114–1136.  https://doi.org/10.1002/tea.20352.CrossRefGoogle Scholar
  39. Jansen, M., Scherer, R., & Schroeders, U. (2015). Students’ self-concept and self-efficacy in the sciences: differential relations to antecedents and educational outcomes. Contemporary Educational Psychology, 41, 13–24.  https://doi.org/10.1016/j.cedpsych.2014.11.002.CrossRefGoogle Scholar
  40. Jensen, F., & Henriksen, E. K. (2015). Short stories of educational choice: in the words of science and technology students. In E. K. Henriksen, J. Dillon & J. Ryder (Hrsg.), Understanding student participation and choice in science and technology education (S. 135–151). Dordrecht, Heidelberg, New York, London: Springer.Google Scholar
  41. Jones, M. G., Howe, A., & Rua, M. J. (2000). Gender differences in students’ experiences, interests, and attitudes toward science and scientists. Science Education, 84(2), 180–192. https://doi.org/10.1002/(SICI)1098-237X(200003)84:2〈180::AID-SCE3〉3.0.CO;2-X.CrossRefGoogle Scholar
  42. Kessels, U. (2005). Fitting into the stereotype: how gender-stereotyped perceptions of prototypic peers relate to liking for school subjects. European Journal of Psychology of Education, 20(3), 309–323.  https://doi.org/10.1007/BF03173559.CrossRefGoogle Scholar
  43. Kessels, U., Rau, M., & Hannover, B. (2006). What goes well with physics? Measuring and altering the image of science. The British Journal of Educational Psychology, 76(4), 761–780.  https://doi.org/10.1348/000709905X59961.CrossRefGoogle Scholar
  44. Kind, P., Jones, K., & Barmby, P. (2007). Developing attitudes towards science measures. International Journal of Science Education, 29(7), 871–893.  https://doi.org/10.1080/09500690600909091.CrossRefGoogle Scholar
  45. Krapp, A., & Prenzel, M. (2011). Research on interest in science: theories, methods, and findings. International Journal of Science Education, 33(1), 27–50.  https://doi.org/10.1080/09500693.2011.518645.CrossRefGoogle Scholar
  46. Krey, O., & Rabe, T. (2016). Motivation for choosing physics teacher education – an instrument adaptation study. In J. Lavonen, K. Juuti, J. Lampiselkä, A. Uitto & K. Hahl (Hrsg.), Science education research: engaging learners for a sustainable future. ESERA 2015 Conference. (S. 2228–2235). Helsinki: University of Helsinki.Google Scholar
  47. Lechte, M.-A. (2008). Sinnbezüge, Interesse und Physik. Eine empirische Untersuchung zum Erleben von Physik aus Sicht von Schülerinnen und Schülern. Opladen, Farmington Hills: Barbara Budrich.Google Scholar
  48. Lee, Y.-L. (2012). Identity-based research in science education. In B. J. Fraser, K. Tobin & C. J. McRobbie (Hrsg.), Second international handbook of science education (S. 35–45). Heidelberg, Berlin, New York: Springer.  https://doi.org/10.1007/978-1-4020-9041-7.CrossRefGoogle Scholar
  49. Loeken, M. (2015). When research challenges gender stereotypes: exploring narratives of girl’s educational choices. In E. K. Henriksen, J. Dillon & J. Ryder (Hrsg.), Understanding student participation and choice in science and technology education (S. 277–295). Dordrecht, Heidelberg, New York, London: Springer.Google Scholar
  50. Lucius-Hoene, G., & Deppermann, A. (2002). Rekonstruktion narrativer Identität. Wiesbaden: VS.CrossRefGoogle Scholar
  51. Lyons, T., & Quinn, F. (2010). Choosing science: understanding the declines in senior high school science enrolments. http://eprints.qut.edu.au/68725/1/Choosing_Science.pdf. Letzter Abruf: 24.11.2016Google Scholar
  52. Maltese, A. V., & Tai, R. H. (2010). Eyeballs in the fridge: sources of early interest in science. International Journal of Science Education, 32(5), 669–685.  https://doi.org/10.1080/09500690902792385.CrossRefGoogle Scholar
  53. Marsh, H. W., Walker, R., & Debus, R. (1991). Subject-specific components of academic self-concept and self-efficacy. Contemporary Educational Psychology, 16(4), 331–345.CrossRefGoogle Scholar
  54. Meinhardt, C., Krey, O., & Rabe, T. (2013). Studienwahlmotive angehender Physiklehrkräfte. Qualitativ inhaltsanalytische Auswertung einer offenen, retrospektiven Befragung. PhyDid A, 12(1), 18–35.Google Scholar
  55. Moeller Madsen, L., Holmegaard, H. T., & Ulriksen, L. (2015). Being a women in a man’s place or being a man in woman’s place: insights into students’ experiences of science and engineering at university. In E. K. Henriksen, J. Dillon & J. Ryder (Hrsg.), Understanding student participation and choice in science and technology education (S. 315–330). Dordrecht, Heidelberg, New York, London: Springer.Google Scholar
  56. Möller, J., & Trautwein, U. (2015). Selbstkonzept. In E. Wild & J. Möller (Hrsg.), Pädagogische Psychologie (Bd. 2, S. 329–342). Berlin, Heidelberg: Springer.  https://doi.org/10.1007/978-3-540-88573-3.CrossRefGoogle Scholar
  57. Morf, C. C., & Koole, S. L. (2014). Das Selbst. In K. Jonas, W. Stroebe & M. Hewstone (Hrsg.), Sozialpsychologie (S. 141–195). Berlin, Heidelberg: Springer.Google Scholar
  58. Müller, K., & Ehmke, T. (2016). Soziale Herkunft und Kompetenzerwerb. In K. Reiss, C. Sälzer, A. Schiepe-Tiska, E. Klieme & O. Köller (Hrsg.), PISA 2015. Eine Studie zwischen Kontinuität und Innovation (S. 285–316). Münster, New York: Waxmann.Google Scholar
  59. Murphy, P., & Whitelegg, E. (2006). Girls in the physics classroom. A review of the research on the participation of girls in physics. Institute of physics report. http://www.iop.org/education/teacher/support/girls_physics/review/file_41599.pdf Letzter Abruf: 20.09.2018Google Scholar
  60. Olsen, R. V., Prenzel, M., & Martin, R. (2011). Interest in science: a many-faceted picture painted by data from the OECD PISA study. International Journal of Science Education, 33(1), 1–6.  https://doi.org/10.1080/09500693.2010.518639. Special Issue: Students’ Interest in Science across the World: Findings from the PISA study.CrossRefGoogle Scholar
  61. Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: a review of the literature and its implications. International Journal of Science Education, 25(9), 1049–1079.  https://doi.org/10.1080/0950069032000032199.CrossRefGoogle Scholar
  62. Pohlmann, B., & Möller, J. (2010). Fragebogen zur Erfassung der Motivation für die Wahl des Lehramtsstudiums (FEMOLA). Zeitschrift für Pädagogische Psychologie, 24(1), 73–84.  https://doi.org/10.1024/1010-0652/a000005.CrossRefGoogle Scholar
  63. Rabe, T., Meinhardt, C., & Krey, O. (2012). Entwicklung eines Instruments zur Erhebung von Selbstwirksamkeitserwartungen in physikdidaktischen Handlungsfeldern. Zeitschrift für Didaktik der Naturwissenschaften, 18, 293–315.Google Scholar
  64. Regan, E., & DeWitt, J. (2015). Attitudes, interest and factors influencing STEM enrolment behaviour: an overview of relevant literature. In E. K. Henriksen, J. Dillon & J. Ryder (Hrsg.), Understanding student participation and choice in science and technology education (S. 63–88). Dordrecht, Heidelberg, New York, London: Springer.Google Scholar
  65. Renninger, K. A., & Hidi, S. (2011). Revisiting the conceptualization, measurement, and generation of interest. Educational Psychologist, 46(3), 168–184.  https://doi.org/10.1080/00461520.2011.587723.CrossRefGoogle Scholar
  66. Retelsdorf, J., & Möller, J. (2012). Grundschule oder Gymnasium? Zur Motivation ein Lehramt zu studieren. Zeitschrift für Pädagogische Psychologie, 26(1), 5–17.  https://doi.org/10.1024/1010-0652/a000056.CrossRefGoogle Scholar
  67. Rost, D. H., & Sparfeldt, J. R. (2002). Facetten des schulischen Selbstkonzepts: Ein Verfahren zur Messung des differentiellen Selbstkonzepts schulischer Leistungen und Fähigkeiten (DISK-Gitter). Diagnostica, 48(3), 130–140.  https://doi.org/10.1026//0012-1924.48.3.130.CrossRefGoogle Scholar
  68. Schiefele, U., Streblow, L., & Brinkmann, J. (2007). Aussteigen oder Durchhalten. Was unterscheidet Studienabbrecher von anderen Studierenden? Zeitschrift Für Entwicklungspsychologie Und Pädagogische Psychologie, 39(3), 127–140.  https://doi.org/10.1026/0049-8637.39.3.127.CrossRefGoogle Scholar
  69. Schiepe-Tiska, A., Simm, I., & Schmidtner, S. (2016). Motivationale Orientierungen, Selbstbilder und Berufserwartungen in den Naturwissenschaften. In K. Reiss, C. Sälzer, A. Schiepe-tiska, E. Klieme & O. Köller (Hrsg.), Pisa 2015. Eine Studie zwischen Kontinuität und Innvoation (S. 99–132). Münster, New York: Waxmann.Google Scholar
  70. Schreiner, C., & Sjøberg, S. (2007). Science education and young people’s identity construction – two mutually incompatible projects? In D. Corrigan, J. Dillon & R. F. Gunstone (Hrsg.), The re-emergence of values in science education (S. 1–17). Rotterdam: Sense.Google Scholar
  71. Schwarzer, R., & Jerusalem, M. (2002). Das Konzept der Selbstwirksamkeit. Zeitschrift für Pädagogik, 44(suppl.), 28–53.Google Scholar
  72. Shanahan, M.-C. (2009). Identity in science learning: exploring the attention given to agency and structure in studies of identity. Studies in Science Education, 45, 43–64.  https://doi.org/10.1080/03057260802681847.CrossRefGoogle Scholar
  73. Sjaastad, J. (2012). Sources of inspiration: the role of significant persons in young people’s choice of science in higher education. International Journal of Science Education, 34(10), 1615–1636.  https://doi.org/10.1080/09500693.2011.590543.CrossRefGoogle Scholar
  74. Sjøberg, S., & Schreiner, C. (2006). How do students perceive science and technology ? Science in School, 1, 66–69.Google Scholar
  75. Smith, B., & Sparkes, A. C. (2008). Contrasting perspectives on narrating selves and identities: an invitation to dialogue. Qualitative Research, 8(1), 5–35.  https://doi.org/10.1177/1468794107085221.CrossRefGoogle Scholar
  76. Stokking, K. M. (2000). Predicting the choice of physics in secondary education. International Journal of Science Education, 22(12), 1261–1283.  https://doi.org/10.1080/095006900750036253.CrossRefGoogle Scholar
  77. Taconis, R., & Kessels, U. (2009). How choosing science depends on students’ individual fit to “science culture”. International Journal of Science Education, 31(8), 1115–1132.  https://doi.org/10.1080/09500690802050876.CrossRefGoogle Scholar
  78. Ulriksen, L., Moeller Madsen, L. M., & Holmegaard, H. T. (2010). What do we know about explanations for drop out / opt out among young people from STM higher education programmes? Studies in Science Education, 46(2), 209–244.CrossRefGoogle Scholar
  79. Whitehead, J. M. (1996). Sex stereotypes, gender identity and subject choice at A‑level. Educational Research, 38(2), 147–160.  https://doi.org/10.1080/0013188960380203.CrossRefGoogle Scholar
  80. Wigfield, A., & Eccles, J. S. (2000). Expectancy-value theory of achievement motivation. Contemporary Educational Psychology, 25(1), 68–81.  https://doi.org/10.1006/ceps.1999.1015.CrossRefGoogle Scholar
  81. Yazilitas, D., Svensson, J., de Vries, G., Saharso, S., & de Vries, G. (2013). Gendered study choice: a literature review. A review of theory and research into the unequal representation of male and female students in mathematics, science, and technology. Educational Research and Evaluation, 19(6), 525–545.  https://doi.org/10.1080/13803611.2013.803931.CrossRefGoogle Scholar
  82. Zabel, J. (2014). Auswertung narrativer Lernerdaten. In D. Krüger, I. Parchmann & H. Schecker (Hrsg.), Methoden in der naturwissenschaftsdidaktischen Forschung (S. 227–239). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  83. Zeldin, A. L., & Pajares, F. (2000). Against the odds: self-efficacy beliefs of women in mathematical, scientific, and technological careers. American Educational Research Journal, 37(1), 215–246.  https://doi.org/10.3102/00028312037001215.CrossRefGoogle Scholar

Copyright information

© Gesellschaft für Didaktik der Physik und Chemie (GDCP); Fachsektion Didaktik der Biologie im VBIO (FDdB im VBIO) and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Physik, Arbeitsbereich Didaktik der PhysikMartin-Luther-Universität Halle-WittenbergHalle/SaaleDeutschland

Personalised recommendations