Advertisement

Metal-Induced Pulmonary Fibrosis

  • Nour Assad
  • Akshay Sood
  • Matthew J. Campen
  • Katherine E. Zychowski
Metals and Health (A Barchowsky, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Metals and Health

Abstract

Purpose of Review

The incidence of pulmonary fibrosis is increasing worldwide and may, in part, be due to occupational and environmental exposures. Secondary fibrotic interstitial lung diseases may be mistaken for idiopathic pulmonary fibrosis with important implications for both disease management and prognosis. The purposes of this review are to shed light on possible underlying causes of interstitial pulmonary fibrosis and to encourage dialogue on the importance of acquiring a thorough patient history of occupational and environmental exposures.

Recent Findings

A recent appreciation for various occupational and environmental metals inducing both antigen-specific immune reactions in the lung and nonspecific “innate” immune system responses has emerged and with it a growing awareness of the potential hazards to the lung caused by low-level metal exposures. Advancements in the contrast and quality of high-resolution CT scans and identification of histopathological patterns of interstitial pulmonary fibrosis have improved clinical diagnostics. Moreover, recent findings indicate specific hotspots of pulmonary fibrosis within the USA. Increased prevalence of lung disease in these areas appears to be linked to occupational/environmental metal exposure and ethnic susceptibility/vulnerability.

Summary

A systematic overview of possible occupational and environmental metals causing interstitial pulmonary fibrosis and a detailed evaluation of vulnerable/susceptible populations may facilitate a broader understanding of potential underlying causes and highlight risks of disease predisposition.

Keywords

Pulmonary fibrosis Interstitial lung disease Metals Environmental health Occupational exposure Health disparities 

Notes

Acknowledgements

We would like to thank Dr. Jesse Denson for editing this manuscript.

Funding Information

This work was supported by NIEHS (K99 ES029104; R01 ES026673), HRSA (2H1GRH27375, H37RH0057, D04RH31788) and Alpha Foundation (AFC719).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All procedures performed in cited studies involving human participants conducted by the authors were in accordance with the ethical standards of the University of New Mexico Institutional Review Board. Animal studies performed by the authors were performed in accordance with the Animal Care and Use Committee.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Nemery B. Metal toxicity and the respiratory tract. Eur Respir J. 1990;3(2):202–19.PubMedGoogle Scholar
  2. 2.
    Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011;183(6):788–824.  https://doi.org/10.1164/rccm.2009-040GL.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Taskar VS, Coultas DB. Is idiopathic pulmonary fibrosis an environmental disease? Proc Am Thorac Soc. 2006;3(4):293–8.  https://doi.org/10.1513/pats.200512-131TK.CrossRefPubMedGoogle Scholar
  4. 4.
    Hutchinson J, Fogarty A, Hubbard R, McKeever T. Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review. Eur Respir J. 2015;46(3):795–806.  https://doi.org/10.1183/09031936.00185114.CrossRefPubMedGoogle Scholar
  5. 5.
    Marshall DC, Salciccioli JD, Shea BS, Akuthota P. Trends in mortality from idiopathic pulmonary fibrosis in the European Union: an observational study of the WHO mortality database from 2001-2013. Eur Respir J. 2018;51(1):1701603.  https://doi.org/10.1183/13993003.01603-2017.CrossRefPubMedGoogle Scholar
  6. 6.
    • Dwyer-Lindgren L, Bertozzi-Villa A, Stubbs RW, Morozoff C, Shirude S, Naghavi M, et al. Trends and Patterns of Differences in Chronic Respiratory Disease Mortality Among US Counties, 1980–2014. JAMA. 2017;318(12):1136–49.  https://doi.org/10.1001/jama.2017.11747 The indicated recent publication is of particular importance given the reported high incidence of interstitial lung disease-related mortality in the four corners area. These findings may warrant further research into underlying causes including environmental or genetic factors.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Aryal S, Nathan SD. An update on emerging drugs for the treatment of idiopathic pulmonary fibrosis. Expert opinion on emerging drugs. 2018;23(2):159–72.  https://doi.org/10.1080/14728214.2018.1471465.CrossRefPubMedGoogle Scholar
  8. 8.
    Raghu G, Collins BF, Xia D, Schmidt R, Abraham JL. Pulmonary fibrosis associated with aluminum trihydrate (Corian) dust. N Engl J Med. 2014;370(22):2154–6.  https://doi.org/10.1056/NEJMc1404786.CrossRefPubMedGoogle Scholar
  9. 9.
    Gilks B, Churg A. Aluminum-induced pulmonary fibrosis: do fibers play a role? Am Rev Respir Dis. 1987;136(1):176–9.  https://doi.org/10.1164/ajrccm/136.1.176.CrossRefPubMedGoogle Scholar
  10. 10.
    Carney J, McAdams P, McCluskey J, Roggli VL. Aluminum-induced pneumoconiosis confirmed by analytical scanning electron microscopy: a case report and review of the literature. Ultrastruct Pathol. 2016;40(3):155–8.  https://doi.org/10.3109/01913123.2016.1141824.CrossRefPubMedGoogle Scholar
  11. 11.
    Jederlinic PJ, Abraham JL, Churg A, Himmelstein JS, Epler GR, Gaensler EA. Pulmonary fibrosis in aluminum oxide workers. Investigation of nine workers, with pathologic examination and microanalysis in three of them. Am Rev Respir Dis. 1990;142(5):1179–84.  https://doi.org/10.1164/ajrccm/142.5.1179.CrossRefPubMedGoogle Scholar
  12. 12.
    Kraus T, Schaller KH, Angerer J, Hilgers RD, Letzel S. Aluminosis--detection of an almost forgotten disease with HRCT. J Occup Med Toxicol. 2006;1:4.  https://doi.org/10.1186/1745-6673-1-4.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    De Vuyst P, Dumortier P, Schandene L, Estenne M, Verhest A, Yernault JC. Sarcoidlike lung granulomatosis induced by aluminum dusts. Am Rev Respir Dis 1987;135(2):493–497. doi: https://doi.org/10.1164/arrd.1987.135.2.493.
  14. 14.
    Taiwo OA. Diffuse parenchymal diseases associated with aluminum use and primary aluminum production. J Occup Environ Med. 2014;56(5 Suppl):S71–2.  https://doi.org/10.1097/JOM.0000000000000054.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Herbert A, Sterling G, Abraham J, Corrin B. Desquamative interstitial pneumonia in an aluminum welder. Hum Pathol. 1982;13(8):694–9.CrossRefGoogle Scholar
  16. 16.
    Miller RR, Churg AM, Hutcheon M, Lom S. Pulmonary alveolar proteinosis and aluminum dust exposure. Am Rev Respir Dis. 1984;130(2):312–5.  https://doi.org/10.1164/arrd.1984.130.2.312.CrossRefPubMedGoogle Scholar
  17. 17.
    Townsend MC, Sussman NB, Enterline PE, Morgan WK, Belk HD, Dinman BD. Radiographic abnormalities in relation to total dust exposure at a bauxite refinery and alumina-based chemical products plant. Am Rev Respir Dis. 1988;138(1):90–5.  https://doi.org/10.1164/ajrccm/138.1.90.CrossRefPubMedGoogle Scholar
  18. 18.
    Albuquerque DA, Seidl VR, Santos VC, Oliveira-Neto JA, Capelozzi VL, Rocco PR, et al. The effect of experimental pleurodesis caused by aluminum hydroxide on lung and chest wall mechanics. Lung. 2001;179(5):293–303.  https://doi.org/10.1007/s004080000069.CrossRefPubMedGoogle Scholar
  19. 19.
    Halatek T, Opalska B, Lao I, Stetkiewicz J, Rydzynski K. Pneumotoxicity of dust from aluminum foundry and pure alumina: a comparative study of morphology and biomarkers in rats. Int J Occup Med Environ Health. 2005;18(1):59–70.PubMedGoogle Scholar
  20. 20.
    Taylor AJ, McClure CD, Shipkowski KA, Thompson EA, Hussain S, Garantziotis S, et al. Atomic layer deposition coating of carbon nanotubes with aluminum oxide alters pro-fibrogenic cytokine expression by human mononuclear phagocytes in vitro and reduces lung fibrosis in mice in vivo. PLoS One. 2014;9(9):e106870.  https://doi.org/10.1371/journal.pone.0106870.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sanchez TR, Powers M, Perzanowski M, George CM, Graziano JH, Navas-Acien A. A meta-analysis of arsenic exposure and lung function: is there evidence of restrictive or obstructive lung disease? Curr Environ Health Rep. 2018;5(2):244–54.  https://doi.org/10.1007/s40572-018-0192-1.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sengupta A, Maji A, Jash D, Maikap M. Unexplained dyspnea in a patient of chronic arsenicosis: a diagnostic challenge and learning curve for physicians. Lung India. 2015;32(2):169–71.  https://doi.org/10.4103/0970-2113.152640.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Rosenberg HG. Systemic arterial disease and chronic arsenicism in infants. Arch Pathol Lab Med. 1974;97:360–5.Google Scholar
  24. 24.
    Mazumder DN, Das Gupta J, Santra A, Pal A, Ghose A, Sarkar S. Chronic arsenic toxicity in West Bengal--the worst calamity in the world. J Indian Med Assoc. 1998;96(1):4–7 18.PubMedGoogle Scholar
  25. 25.
    Mazumder DN, Haque R, Ghosh N, De BK, Santra A, Chakraborti D, et al. Arsenic in drinking water and the prevalence of respiratory effects in West Bengal, India. Int J Epidemiol. 2000;29(6):1047–52.CrossRefGoogle Scholar
  26. 26.
    von Ehrenstein OS, Mazumder DN, Yuan Y, Samanta S, Balmes J, Sil A, et al. Decrements in lung function related to arsenic in drinking water in West Bengal, India. Am J Epidemiol. 2005;162(6):533–41.  https://doi.org/10.1093/aje/kwi236.CrossRefGoogle Scholar
  27. 27.
    De BK, Majumdar D, Sen S, Guru S, Kundu S. Pulmonary involvement in chronic arsenic poisoning from drinking contaminated ground-water. J Assoc Physicians India. 2004;52:395–400.PubMedGoogle Scholar
  28. 28.
    Mazumder DN, Steinmaus C, Bhattacharya P, von Ehrenstein OS, Ghosh N, Gotway M, et al. Bronchiectasis in persons with skin lesions resulting from arsenic in drinking water. Epidemiology. 2005;16(6):760–5.CrossRefGoogle Scholar
  29. 29.
    Kozul CD, Hampton TH, Davey JC, Gosse JA, Nomikos AP, Eisenhauer PL, et al. Chronic exposure to arsenic in the drinking water alters the expression of immune response genes in mouse lung. Environ Health Perspect. 2009;117(7):1108–15.  https://doi.org/10.1289/ehp.0800199.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lantz RC, Lynch BJ, Boitano S, Poplin GS, Littau S, Tsaprailis G, et al. Pulmonary biomarkers based on alterations in protein expression after exposure to arsenic. Environ Health Perspect. 2007;115(4):586–91.  https://doi.org/10.1289/ehp.9611.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ramsey KA, Larcombe AN, Sly PD, Zosky GR. In utero exposure to low dose arsenic via drinking water impairs early life lung mechanics in mice. BMC Pharmacol Toxicol. 2013;14:13.  https://doi.org/10.1186/2050-6511-14-13.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wang CK, Lee HL, Chang H, Tsai MH, Kuo YC, Lin P. Enhancement between environmental tobacco smoke and arsenic on emphysema-like lesions in mice. J Hazard Mater. 2012;221-222:256–63.  https://doi.org/10.1016/j.jhazmat.2012.04.042.CrossRefPubMedGoogle Scholar
  33. 33.
    Zheng Y, Tao S, Lian F, Chau BT, Chen J, Sun G, et al. Sulforaphane prevents pulmonary damage in response to inhaled arsenic by activating the Nrf2-defense response. Toxicol Appl Pharmacol. 2012;265(3):292–9.  https://doi.org/10.1016/j.taap.2012.08.028.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Burchiel SW, Mitchell LA, Lauer FT, Sun X, McDonald JD, Hudson LG, et al. Immunotoxicity and biodistribution analysis of arsenic trioxide in C57Bl/6 mice following a 2-week inhalation exposure. Toxicol Appl Pharmacol. 2009;241(3):253–9.  https://doi.org/10.1016/j.taap.2009.09.019.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hays AM, Srinivasan D, Witten ML, Carter DE, Lantz RC. Arsenic and cigarette smoke synergistically increase DNA oxidation in the lung. Toxicol Pathol. 2006;34(4):396–404.  https://doi.org/10.1080/01926230600824926.CrossRefPubMedGoogle Scholar
  36. 36.
    Webb DR, Wilson SE, Carter DE. Comparative pulmonary toxicity of gallium arsenide, gallium(III) oxide, or arsenic(III) oxide intratracheally instilled into rats. Toxicol Appl Pharmacol. 1986;82(3):405–16.CrossRefGoogle Scholar
  37. 37.
    Mandal P. Molecular insight of arsenic-induced carcinogenesis and its prevention. Naunyn Schmiedeberg's Arch Pharmacol. 2017;390(5):443–55.  https://doi.org/10.1007/s00210-017-1351-x.CrossRefGoogle Scholar
  38. 38.
    Heck JE, Andrew AS, Onega T, Rigas JR, Jackson BP, Karagas MR, et al. Lung cancer in a U.S. population with low to moderate arsenic exposure. Environ Health Perspect. 2009;117(11):1718–23.  https://doi.org/10.1289/ehp.0900566.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Goyer RA. Transplacental transfer of cadmium and fetal effects. Fundam Appl Toxicol. 1991;16(1):22–3.CrossRefGoogle Scholar
  40. 40.
    Sunderman FW Jr. Carcinogenic effects of metals. Fed Proc. 1978;37(1):40–6.PubMedGoogle Scholar
  41. 41.
    Léonard AGGB, Jacquet P, Carcinogenicity LRR. Mutagenicity, and teratogenicity of industrially used metals. Mutagenicity, carcinogenicity. In: And teratogenicity of industrial pollutants; 1984.Google Scholar
  42. 42.
    Singh PK, Gale GR, Jones SG, Jones MM. Mobilization of aged in vivo cadmium deposits by diethyl dimercaptosuccinate. Toxicol Lett. 1988;41(3):239–44.CrossRefGoogle Scholar
  43. 43.
    Kelleher P, Pacheco K, Newman LS. Inorganic dust pneumonias: the metal-related parenchymal disorders. Environ Health Perspect. 2000;108(Suppl 4):685–96.CrossRefGoogle Scholar
  44. 44.
    Smith TJ, Petty TL, Reading JC, Lakshminarayan S. Pulmonary effects of chronic exposure to airborne cadmium. Am Rev Respir Dis. 1976;114(1):161–9.  https://doi.org/10.1164/arrd.1976.114.1.161.CrossRefPubMedGoogle Scholar
  45. 45.
    Townshend RH. Acute cadmium pneumonitis: a 17-year follow-up. Br J Ind Med. 1982;39(4):411–2.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Blum JL, Rosenblum LK, Grunig G, Beasley MB, Xiong JQ, Zelikoff JT. Short-term inhalation of cadmium oxide nanoparticles alters pulmonary dynamics associated with lung injury, inflammation, and repair in a mouse model. Inhal Toxicol. 2014;26(1):48–58.  https://doi.org/10.3109/08958378.2013.851746.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Driscoll KE, Maurer JK, Poynter J, Higgins J, Asquith T, Miller NS. Stimulation of rat alveolar macrophage fibronectin release in a cadmium chloride model of lung injury and fibrosis. Toxicol Appl Pharmacol. 1992;116(1):30–7.CrossRefGoogle Scholar
  48. 48.
    Valverde M, Fortoul TI, Diaz-Barriga F, Mejia J, del Castillo ER. Induction of genotoxicity by cadmium chloride inhalation in several organs of CD-1 mice. Mutagenesis 2000;15(2):109–114.CrossRefGoogle Scholar
  49. 49.
    Skoczynska A, Gruszczynski L, Wojakowska A, Scieszka M, Turczyn B, Schmidt E. Association between the type of workplace and lung function in copper miners. Biomed Res Int. 2016;2016:5928572.  https://doi.org/10.1155/2016/5928572.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Pimentel JC, Marques F. "vineyard sprayer's lung": a new occupational disease. Thorax. 1969;24(6):678–88.CrossRefGoogle Scholar
  51. 51.
    Lai X, Zhao H, Zhang Y, Guo K, Xu Y, Chen S, et al. Intranasal delivery of copper oxide nanoparticles induces pulmonary toxicity and fibrosis in C57BL/6 mice. Sci Rep. 2018;8(1):4499.  https://doi.org/10.1038/s41598-018-22556-7.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kim JS, Adamcakova-Dodd A, O'Shaughnessy PT, Grassian VH, Thorne PS. Effects of copper nanoparticle exposure on host defense in a murine pulmonary infection model. Part Fibre Toxicol. 2011;8:29.  https://doi.org/10.1186/1743-8977-8-29.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Pettibone JM, Cwiertny DM, Scherer M, Grassian VH. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation. Langmuir. 2008;24(13):6659–67.  https://doi.org/10.1021/la7039916.CrossRefPubMedGoogle Scholar
  54. 54.
    Barceloux DG. Molybdenum. J Toxicol Clin Toxicol. 1999;37(2):231–7.CrossRefGoogle Scholar
  55. 55.
    Ott HC, Prior C, Herold M, Riha M, Laufer G, Ott G. Respiratory symptoms and bronchoalveolar lavage abnormalities in molybdenum exposed workers. Wien Klin Wochenschr. 2004;116(Suppl 1):25–30.PubMedGoogle Scholar
  56. 56.
    Selden AI, Persson B, Bornberger-Dankvardt SI, Winstrom LE, Bodin LS. Exposure to cobalt chromium dust and lung disorders in dental technicians. Thorax. 1995;50(7):769–72.CrossRefGoogle Scholar
  57. 57.
    Selden A, Sahle W, Johansson L, Sorenson S, Persson B. Three cases of dental technician's pneumoconiosis related to cobalt-chromium-molybdenum dust exposure. Chest. 1996;109(3):837–42.CrossRefGoogle Scholar
  58. 58.
    National Toxicology P. NTP toxicology and carcinogenesis studies of molybdenum trioxide (CAS no. 1313-27-5) in F344 rats and B6C3F1 mice (inhalation studies). Natl Toxicol Program Tech Rep Ser. 1997;462:1–269.Google Scholar
  59. 59.
    Tanaka J, Moriyama H, Terada M, Takada T, Suzuki E, Narita I, et al. An observational study of giant cell interstitial pneumonia and lung fibrosis in hard metal lung disease. BMJ Open. 2014;4(3):e004407.  https://doi.org/10.1136/bmjopen-2013-004407.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kusaka Y, Yokoyama K, Sera Y, Yamamoto S, Sone S, Kyono H, et al. Respiratory diseases in hard metal workers: an occupational hygiene study in a factory. Br J Ind Med. 1986;43(7):474–85.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Kaneko Y, Kikuchi N, Ishii Y, Kawabata Y, Moriyama H, Terada M, et al. Upper lobe-dominant pulmonary fibrosis showing deposits of hard metal component in the fibrotic lesions. Intern Med. 2010;49(19):2143–5.CrossRefGoogle Scholar
  62. 62.
    Swennen B, Buchet JP, Stanescu D, Lison D, Lauwerys R. Epidemiological survey of workers exposed to cobalt oxides, cobalt salts, and cobalt metal. Br J Ind Med. 1993;50(9):835–42.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Lison D, Lauwerys R. In vitro cytotoxic effects of cobalt-containing dusts on mouse peritoneal and rat alveolar macrophages. Environ Res. 1990;52(2):187–98.CrossRefGoogle Scholar
  64. 64.
    Lison D, Lauwerys R. Biological responses of isolated macrophages to cobalt metal and tungsten carbide-cobalt powders. Pharmacol Toxicol. 1991;69(4):282–5.CrossRefGoogle Scholar
  65. 65.
    Chazel V, Gerasimo P, Dabouis V, Laroche P, Paquet F. Characterisation and dissolution of depleted uranium aerosols produced during impacts of kinetic energy penetrators against a tank. Radiat Prot Dosim. 2003;105(1–4):163–6.CrossRefGoogle Scholar
  66. 66.
    Osman AA, Geipel G, Bernhard G, Worch E. Investigation of uranium binding forms in selected German mineral waters. Environ Sci Pollut Res Int. 2013;20(12):8629–35.  https://doi.org/10.1007/s11356-013-1822-7.CrossRefPubMedGoogle Scholar
  67. 67.
    Schins RP, Borm PJ. Mechanisms and mediators in coal dust induced toxicity: a review. Ann Occup Hyg. 1999;43(1):7–33.CrossRefGoogle Scholar
  68. 68.
    Tasat DR, de Rey BM. Cytotoxic effect of uranium dioxide on rat alveolar macrophages. Environ Res. 1987;44(1):71–81.CrossRefGoogle Scholar
  69. 69.
    ATSDR. Toxicological profile for uranium. In: Services UDoHaH, editor; 1999.Google Scholar
  70. 70.
    Monleau M, De Meo M, Paquet F, Chazel V, Dumenil G, Donnadieu-Claraz M. Genotoxic and inflammatory effects of depleted uranium particles inhaled by rats. Toxicol Sci. 2006;89(1):287–95.  https://doi.org/10.1093/toxsci/kfj010.CrossRefPubMedGoogle Scholar
  71. 71.
    Gazin V, Kerdine S, Grillon G, Pallardy M, Raoul H. Uranium induces TNF alpha secretion and MAPK activation in a rat alveolar macrophage cell line. Toxicol Appl Pharmacol. 2004;194(1):49–59.CrossRefGoogle Scholar
  72. 72.
    Samet JM, Young RA, Morgan MV, Humble CG, Epler GR, McLoud TC. Prevalence survey of respiratory abnormalities in New Mexico uranium miners. Health Phys. 1984;46(2):361–70.CrossRefGoogle Scholar
  73. 73.
    Kocher E, Rendon KJ, Kesler D, Boyce TW, Myers O, Evans K, et al. Uranium workers demonstrate lower lobe predominant irregular Pneumoconiotic opacities on chest radiographs. J Health Care Poor Underserved. 2016;27(4A):116–27.  https://doi.org/10.1353/hpu.2016.0193.CrossRefPubMedGoogle Scholar
  74. 74.
    Mapel DW, Coultas DB, James DS, Hunt WC, Stidley CA, Gilliland FD. Ethnic differences in the prevalence of nonmalignant respiratory disease among uranium miners. Am J Public Health. 1997;87(5):833–8.CrossRefGoogle Scholar
  75. 75.
    Walsh L, Grosche B, Schnelzer M, Tschense A, Sogl M, Kreuzer M. A review of the results from the German Wismut uranium miners cohort. Radiat Prot Dosim. 2015;164(1–2):147–53.  https://doi.org/10.1093/rpd/ncu281.CrossRefGoogle Scholar
  76. 76.
    Schubauer-Berigan MK, Daniels RD, Pinkerton LE. Radon exposure and mortality among white and American Indian uranium miners: an update of the Colorado plateau cohort. Am J Epidemiol. 2009;169(6):718–30.  https://doi.org/10.1093/aje/kwn406.CrossRefPubMedGoogle Scholar
  77. 77.
    Archer VE, Renzetti AD, Doggett RS, Jarvis JQ, Colby TV. Chronic diffuse interstitial fibrosis of the lung in uranium miners. J Occup Environ Med. 1998;40(5):460–74.CrossRefGoogle Scholar
  78. 78.
  79. 79.
    Cobalt in hard metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide. In: Humans IWGotEoCRt, editor. IARC Monogr Eval Carcinog Risks Hum. 2006/08/16 ed2006. p. 1–294.Google Scholar
  80. 80.
    Sadiq MMAA. Nickel and vanadium in air particulates at Dhahran (Saudi Arabia) during and after the Kuwait oil fires. Atmos Environ. 1994;28(13):2249–53.CrossRefGoogle Scholar
  81. 81.
    Peltier RE, Lippmann M. Residual oil combustion: 2. Distributions of airborne nickel and vanadium within new York City. J Expo Sci Environ Epidemiol. 2010;20(4):342–50.  https://doi.org/10.1038/jes.2009.28.CrossRefPubMedGoogle Scholar
  82. 82.
    Campen MJ, Nolan JP, Schladweiler MC, Kodavanti UP, Evansky PA, Costa DL, et al. Cardiovascular and thermoregulatory effects of inhaled PM-associated transition metals: a potential interaction between nickel and vanadium sulfate. Toxicol Sci. 2001;64(2):243–52.CrossRefGoogle Scholar
  83. 83.
    Irsigler GB, Visser PJ, Spangenberg PA. Asthma and chemical bronchitis in vanadium plant workers. Am J Ind Med. 1999;35(4):366–74.CrossRefGoogle Scholar
  84. 84.
    Hauser R, Elreedy S, Hoppin JA, Christiani DC. Airway obstruction in boilermakers exposed to fuel oil ash. A prospective investigation. Am J Respir Crit Care Med. 1995;152(5 Pt 1):1478–84.  https://doi.org/10.1164/ajrccm.152.5.7582280.CrossRefPubMedGoogle Scholar
  85. 85.
    Lees RE. Changes in lung function after exposure to vanadium compounds in fuel oil ash. Br J Ind Med. 1980;37(3):253–6.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Sjoberg SG. Vanadium bronchitis from cleaning oil-fired boilers. AMA archives of industrial health. 1955;11(6):505–12.PubMedGoogle Scholar
  87. 87.
    Woodin MA, Liu Y, Hauser R, Smith TJ, Christiani DC. Pulmonary function in workers exposed to low levels of fuel-oil ash. J Occup Environ Med. 1999;41(11):973–80.CrossRefGoogle Scholar
  88. 88.
    Vandenplas O, Binard-Van Cangh F, Gregoire J, Brumagne A, Larbanois A. Fever and neutrophilic alveolitis caused by a vanadium based catalyst. Occup Environ Med. 2002;59(11):785–7.CrossRefGoogle Scholar
  89. 89.
    Eeftens M, Hoek G, Gruzieva O, Molter A, Agius R, Beelen R, et al. Elemental composition of particulate matter and the association with lung function. Epidemiology. 2014;25(5):648–57.  https://doi.org/10.1097/EDE.0000000000000136.CrossRefPubMedGoogle Scholar
  90. 90.
    (U.S.). NRC. Medical and biologic effects of environmental pollutants. In: Pollutants CoBEoA, editor. Vanadium. Washington: National Academy of Sciences.Google Scholar
  91. 91.
    Vouk V. Handbook on the toxicology of metals. 4th ed. vanadium. In: Amsterdam Elsevier-North Holland biomedical press; 1979.Google Scholar
  92. 92.
  93. 93.
    Ress NB, Chou BJ, Renne RA, Dill JA, Miller RA, Roycroft JH, et al. Carcinogenicity of inhaled vanadium pentoxide in F344/N rats and B6C3F1 mice. Toxicol Sci. 2003;74(2):287–96.  https://doi.org/10.1093/toxsci/kfg136.CrossRefPubMedGoogle Scholar
  94. 94.
    Ingram JL, Antao-Menezes A, Turpin EA, Wallace DG, Mangum JB, Pluta LJ, et al. Genomic analysis of human lung fibroblasts exposed to vanadium pentoxide to identify candidate genes for occupational bronchitis. Respir Res. 2007;8:34.  https://doi.org/10.1186/1465-9921-8-34.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Walters DM, White KM, Patel U, Davis MJ, Veluci-Marlow RM, Bhupanapadu Sunkesula SR, et al. Genetic susceptibility to interstitial pulmonary fibrosis in mice induced by vanadium pentoxide (V2O5). FASEB J. 2014;28(3):1098–112.  https://doi.org/10.1096/fj.13-235044.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Zychowski KE, Kodali V, Harmon M, Tyler CR, Sanchez B, Ordonez Suarez Y, et al. Respirable uranyl-vanadate-containing particulate matter derived from a legacy uranium mine site exhibits potentiated cardiopulmonary toxicity. Toxicol Sci. 2018;164(1):101–14.  https://doi.org/10.1093/toxsci/kfy064.CrossRefPubMedGoogle Scholar
  97. 97.
    Lewis J, Hoover J, MacKenzie D. Mining and environmental health disparities in native American communities. Curr Environ Health Rep. 2017;4(2):130–41.  https://doi.org/10.1007/s40572-017-0140-5.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Samet JM. Some current challenges in research on air pollution and health. Salud Publica Mex. 2014;56(4):379–85.CrossRefGoogle Scholar
  99. 99.
    Travis WD, Costabel U, Hansell DM, King TE, Jr., Lynch DA, Nicholson AG et al. An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med 2013;188(6):733–748. doi: https://doi.org/10.1164/rccm.201308-1483ST.CrossRefGoogle Scholar
  100. 100.
    Guha Mazumder DN. Chronic arsenic toxicity: clinical features, epidemiology, and treatment: experience in West Bengal. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2003;38(1):141–63.CrossRefGoogle Scholar
  101. 101.
    Mazumder DN. Treatment of chronic arsenic toxicity as observed in West Bengal. J Indian Med Assoc. 1996;94(2):41–2.PubMedGoogle Scholar
  102. 102.
    BM B, Lawson WE, Oury TD, Sisson TH, Raghavendran K, Hogaboam CM. Animal models of fibrotic lung disease. Am J Respir Cell Mol Biol. 2013;49(2):167–79.  https://doi.org/10.1165/rcmb.2013-0094TR.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Nour Assad
    • 1
  • Akshay Sood
    • 1
    • 2
  • Matthew J. Campen
    • 3
  • Katherine E. Zychowski
    • 3
  1. 1.Department of Internal MedicineUniversity of New Mexico School of MedicineAlbuquerqueUSA
  2. 2.Miners’ Colfax Medical CenterRatonUSA
  3. 3.Department of Pharmaceutical SciencesUniversity of New Mexico-Health Sciences CenterAlbuquerqueUSA

Personalised recommendations