Current Environmental Health Reports

, Volume 5, Issue 1, pp 125–133 | Cite as

Zebrafish as a Model for Toxicological Perturbation of Yolk and Nutrition in the Early Embryo

Mechanisms of Toxicity (CJ Mattingly and A Planchart, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Mechanisms of Toxicity

Abstract

Purpose of Review

Developmental toxicity assessments often focus on structural outcomes and overlook subtle metabolic differences which occur during the early embryonic period. Deviant embryonic nutrition can result in later-life disease, including diabetes, obesity, and cardiovascular disease. Prior to placenta-mediated nutrient exchange, the human embryo requires maternally supplied nutritional substrates for growth, called yolk. Here, we compare the biology of the human and zebrafish yolk and review examples of toxicant-mediated perturbation of yolk defects, composition, and utilization.

Recent Findings

Zebrafish embryos, like human embryos, have a protruding yolk sac that serves as a nutritional cache. Aberrant yolk morphology is a common qualitative finding in fish embryotoxicity studies, but quantitative assessment and characterization provides an opportunity to uncover mechanistic targets of toxicant effects on embryonic nutrition.

Summary

The zebrafish and the study of its yolk sac is an excellent model for uncovering toxicant disruptions to early embryonic nutrition and has potential to discover mechanistic insights into the developmental origins of health and disease.

Keywords

Yolk Yolk sac Embryonic nutrition Developmental toxicology Malabsorption 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies with animal subjects performed by the authors have complied with all applicable ethical standards. All procedures were approved by the University of Massachusetts Amherst IACUC committee (Animal Welfare Assurance Number A3551-01).

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Barker DJP. The developmental origins of adult disease. J Am Coll Nutr. 2004;23(suppl 6):588S–95S.  https://doi.org/10.1080/07315724.2004.10719428.CrossRefPubMedGoogle Scholar
  2. 2.
    Eriksson JG, Osmond C, Kajantie E, Forsén TJ, Barker DJP. Patterns of growth among children who later develop type 2 diabetes or its risk factors. Diabetologia. 2006;49(12):2853–8.  https://doi.org/10.1007/s00125-006-0459-1.CrossRefPubMedGoogle Scholar
  3. 3.
    Haugen AC, Schug TT, Collman G, Heindel JJ. Evolution of DOHaD: the impact of environmental health sciences. J Dev Orig Health Dis. 2015;6(2):55–64.  https://doi.org/10.1017/s2040174414000580.CrossRefPubMedGoogle Scholar
  4. 4.
    Susser M, Stein Z. Timing in prenatal nutrition: a reprise of the Dutch famine study. Nutr Rev. 1994;52(3):84–94.CrossRefPubMedGoogle Scholar
  5. 5.
    Thomson AM, Billewicz WZ, Hytten FE. The assessment of fetal growth. BJOG Int J Obstet Gynaecol. 1968;75(9):903–16.  https://doi.org/10.1111/j.1471-0528.1968.tb01615.x.CrossRefGoogle Scholar
  6. 6.
    Bronson FH. Mammalian reproductive biology. University of Chicago Press; 1990.Google Scholar
  7. 7.
    Burton GJ, Watson AL, Hempstock J, Skepper JN, Jauniaux E. Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J Clin Endocrinol Metab. 2002;87(6):2954–9.  https://doi.org/10.1210/jcem.87.6.8563.CrossRefPubMedGoogle Scholar
  8. 8.
    Link BA, Megason SG. Zebrafish as a model for development. In: Conn PM, editor. Sourcebook of Models for Biomedical Research. Totowa: Humana Press; 2008. p. 103–12.  https://doi.org/10.1007/978-1-59745-285-4_13.CrossRefGoogle Scholar
  9. 9.
    Wilson C. Aspects of larval rearing. ILAR J. 2012;53(2):169–78.  https://doi.org/10.1093/ilar.53.2.169.CrossRefPubMedGoogle Scholar
  10. 10.
    Westerfield M. The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 5th ed. Eugene: Univ. of Oregon Press; 2007.Google Scholar
  11. 11.
    Kunz-Ramsay Y. Viviparity. Developmental Biology of Teleost Fishes Springer Science & Business Media; 2004.Google Scholar
  12. 12.
    Burton GJ, Hempstock J, Jauniaux E. Nutrition of the human fetus during the first trimester—a review. Placenta. 2001;22(Suppl A):S70–7.  https://doi.org/10.1053/plac.2001.0639.CrossRefPubMedGoogle Scholar
  13. 13.
    • Miyares RL, de Rezende VB, Farber SA. Zebrafish yolk lipid processing: a tractable tool for the study of vertebrate lipid transport and metabolism. Dis Model Mech. 2014;7(7):915–27.  https://doi.org/10.1242/dmm.015800. This paper presents a unique method to visualize embryonic uptake of fatty acids. This study specifically uses the fluorescent palmitate analog Bodipy C12 in the zebrafish. CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    • Marín-Juez R, Rovira M, Crespo D, van der Vaart M, Spaink HP, Planas JV. GLUT2-mediated glucose uptake and availability are required for embryonic brain development in zebrafish. J Cereb Blood Flow Metab. 2015;35(1):74–85.  https://doi.org/10.1038/jcbfm.2014.171. This paper presents a method to visualize uptake of glucose from the yolk using the glucose-analog 2-NBDG in zebrafish. CrossRefPubMedGoogle Scholar
  15. 15.
    Zhou W, Hildebrandt F. Inducible podocyte injury and proteinuria in transgenic zebrafish. J Am Soc Nephrol: JASN. 2012;23(6):1039–47.  https://doi.org/10.1681/asn.2011080776. CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    •• Fraher D, Sanigorski A, Mellett Natalie A, Meikle Peter J, Sinclair Andrew J, Gibert Y. Zebrafish embryonic Lipidomic analysis reveals that the yolk cell is metabolically active in Processing Lipid. Cell Rep. 2016;14(6):1317–29. This seminal paper presents the lipidomic composition of the zebrafish embryo’s yolk. It demonstrates that the yolk sac is able to process and metabolize lipids contained in the yolk. CrossRefPubMedGoogle Scholar
  17. 17.
    Dunning KR, Russell DL, Robker RL. Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction. 2014;148(1):R15–27.  https://doi.org/10.1530/rep-13-0251.CrossRefPubMedGoogle Scholar
  18. 18.
    • Link V, Shevchenko A, Heisenberg C-P. Proteomics of early zebrafish embryos. BMC Dev Biol. 2006;6(1):1–9.  https://doi.org/10.1186/1471-213x-6-1. This paper defines the protein composition of the zebrafish embryo and yolk. CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Denslow ND, Chow MC, Kroll KJ, Green L. Vitellogenin as a biomarker of exposure for estrogen or estrogen mimics. Ecotoxicology (Lond, Engl). 1999;8(5):385–98.  https://doi.org/10.1023/a:1008986522208. CrossRefGoogle Scholar
  20. 20.
    Ge C, Lu W, Chen A. Quantitative proteomic reveals the dynamic of protein profile during final oocyte maturation in zebrafish. Biochem Biophys Res Commun. 2017;490(3):657–63.  https://doi.org/10.1016/j.bbrc.2017.06.093.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhong L, Yuan L, Rao Y, Li Z, Zhang X, Liao T, et al. Distribution of vitellogenin in zebrafish (Danio rerio) tissues for biomarker analysis. Aquat Toxicol. 2014;149:1–7.  https://doi.org/10.1016/j.aquatox.2014.01.022. CrossRefPubMedGoogle Scholar
  22. 22.
    • Arukwe A, Goksøyr A. Eggshell and egg yolk proteins in fish: hepatic proteins for the next generation: oogenetic, population, and evolutionary implications of endocrine disruption. Comp Hepatol. 2003;2(1):4.  https://doi.org/10.1186/1476-5926-2-4. A comprehensive review of vitellogenesis in fish. CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    • Lubzens E, Bobe J, Young G, Sullivan CV. Maternal investment in fish oocytes and eggs: the molecular cargo and its contributions to fertility and early development. Aquaculture. 2017;472:107–43.  https://doi.org/10.1016/j.aquaculture.2016.10.029. A comprehensive review of vitellogenesis in fish. CrossRefGoogle Scholar
  24. 24.
    Abrams EW, Mullins MC. Early zebrafish development: it’s in the maternal genes. Curr Opin Genet Dev. 2009;19(4):396–403.  https://doi.org/10.1016/j.gde.2009.06.002.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Rauwerda H, Wackers P, Pagano JFB, de Jong M, Ensink W, Dekker R, et al. Mother-specific signature in the maternal transcriptome composition of mature, unfertilized zebrafish eggs. PLoS One. 2016;11(1):e0147151.  https://doi.org/10.1371/journal.pone.0147151.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Hanisch K, Kuster E, Altenburger R, Gundel U. Proteomic signatures of the zebrafish (Danio Rerio) embryo: sensitivity and specificity in toxicity assessment of chemicals. Int J Proteomics. 2010;2010:1–13.  https://doi.org/10.1155/2010/630134.CrossRefGoogle Scholar
  27. 27.
    Klinge CM. Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res. 2001;29(14):2905–19.  https://doi.org/10.1093/nar/29.14.2905.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Wang J, Shi X, Du Y, Zhou B. Effects of xenoestrogens on the expression of vitellogenin (vtg) and cytochrome P450 aromatase (cyp19a and b) genes in zebrafish (Danio rerio) larvae. J Environ Sci Health A. 2011;46(9):960–7.  https://doi.org/10.1080/10934529.2011.586253.CrossRefGoogle Scholar
  29. 29.
    • Matsuda Y, Ito Y, Hashimoto H, Yokoi H, Suzuki T. Detection of vitellogenin incorporation into zebrafish oocytes by FITC fluorescence Reprod Biol Endocrinol: RB&E. 2011;9:45-. doi: https://doi.org/10.1186/1477-7827-9-45. This paper presents a method to quantify vitellogenin deposition into the yolk using a fluorometric probe.
  30. 30.
    Wang J, Zhao F, Shan R, Tian H, Wang W, Ru S. Juvenile zebrafish in the vitellogenin blank period as an alternative test organism for evaluation of estrogenic activity of chemicals. Environ Toxicol Chem. 2016;35(7):1783–7.  https://doi.org/10.1002/etc.3328.CrossRefPubMedGoogle Scholar
  31. 31.
    Norman Haldén A, Nyholm JR, Andersson PL, Holbech H, Norrgren L. Oral exposure of adult zebrafish (Danio rerio) to 2,4,6-tribromophenol affects reproduction. Aquat Toxicol. 2010;100(1):30–7.  https://doi.org/10.1016/j.aquatox.2010.07.010.CrossRefGoogle Scholar
  32. 32.
    Aluru N, Leatherland JF, Vijayan MM. Bisphenol a in oocytes leads to growth suppression and altered stress performance in juvenile rainbow trout. PLoS One. 2010;5(5):e10741.  https://doi.org/10.1371/journal.pone.0010741.CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Keiter S, Baumann L, Färber H, Holbech H, Skutlarek D, Engwall M, et al. Long-term effects of a binary mixture of perfluorooctane sulfonate (PFOS) and bisphenol A (BPA) in zebrafish (Danio rerio). Aquat Toxicol. 2012;118:116–29.  https://doi.org/10.1016/j.aquatox.2012.04.003.CrossRefPubMedGoogle Scholar
  34. 34.
    Uren-Webster TM, Lewis C, Filby AL, Paull GC, Santos EM. Mechanisms of toxicity of di(2-ethylhexyl) phthalate on the reproductive health of male zebrafish. Aquat Toxicol. 2010;99(3):360–9.  https://doi.org/10.1016/j.aquatox.2010.05.015.CrossRefPubMedGoogle Scholar
  35. 35.
    Chow WS, Chan WK-L, Chan KM. Toxicity assessment and vitellogenin expression in zebrafish (Danio rerio) embryos and larvae acutely exposed to bisphenol A, endosulfan, heptachlor, methoxychlor and tetrabromobisphenol A. J Appl Toxicol. 2013;33(7):670–8.  https://doi.org/10.1002/jat.2723.CrossRefPubMedGoogle Scholar
  36. 36.
    Kausch U, Alberti M, Haindl S, Budczies J, Hock B. Biomarkers for exposure to estrogenic compounds: gene expression analysis in zebrafish (Danio rerio). Environ Toxicol. 2008;23(1):15–24.  https://doi.org/10.1002/tox.20306.CrossRefPubMedGoogle Scholar
  37. 37.
    Yin P, Li Y-W, Chen Q-L, Liu Z-H. Diethylstilbestrol, flutamide and their combination impaired the spermatogenesis of male adult zebrafish through disrupting HPG axis, meiosis and apoptosis. Aquat Toxicol. 2017;185:129–37.  https://doi.org/10.1016/j.aquatox.2017.02.013.CrossRefPubMedGoogle Scholar
  38. 38.
    Christianson-Heiska I-L, Haavisto T, Paranko J, Bergelin E, Isomaa B. Effects of the wood extractives dehydroabietic acid and betulinol on reproductive physiology of zebrafish (Danio rerio)—a two-generation study. Aquat Toxicol. 2008;86(3):388–96.  https://doi.org/10.1016/j.aquatox.2007.12.001.CrossRefPubMedGoogle Scholar
  39. 39.
    Lange A, Katsu Y, Miyagawa S, Ogino Y, Urushitani H, Kobayashi T, et al. Comparative responsiveness to natural and synthetic estrogens of fish species commonly used in the laboratory and field monitoring. Aquat Toxicol. 2012;109:250–8.  https://doi.org/10.1016/j.aquatox.2011.09.004.CrossRefPubMedGoogle Scholar
  40. 40.
    Örn S, Holbech H, Norrgren L. Sexual disruption in zebrafish (Danio rerio) exposed to mixtures of 17α-ethinylestradiol and 17β-trenbolone. Environ Toxicol Pharmacol. 2016;41:225–31.  https://doi.org/10.1016/j.etap.2015.12.010.CrossRefPubMedGoogle Scholar
  41. 41.
    Techer D, Milla S, Fontaine P, Viot S, Thomas M. Influence of waterborne gallic and pelargonic acid exposures on biochemical and reproductive parameters in the zebrafish (Danio rerio). Environ Toxicol. 2017;32(1):227–40.  https://doi.org/10.1002/tox.22228.CrossRefPubMedGoogle Scholar
  42. 42.
    Paige Souder J, Gorelick DA. Quantification of estradiol uptake in zebrafish embryos and larvae. Toxicol Sci: Off J Soc Toxicol. 2017;  https://doi.org/10.1093/toxsci/kfx107.
  43. 43.
    Dolgova NV, Hackett MJ, MacDonald TC, Nehzati S, James AK, Krone PH, et al. Distribution of selenium in zebrafish larvae after exposure to organic and inorganic selenium forms. Metallomics. 2016;8(3):305–12.  https://doi.org/10.1039/c5mt00279f.CrossRefPubMedGoogle Scholar
  44. 44.
    Chen Y, Ren C, Ouyang S, Hu X, Zhou Q. Mitigation in multiple effects of graphene oxide toxicity in zebrafish embryogenesis driven by humic acid. Environ Sci Technol. 2015;49(16):10147–54.  https://doi.org/10.1021/acs.est.5b02220.CrossRefPubMedGoogle Scholar
  45. 45.
    Choi S-A, Park CS, Kwon OS, Giong H-K, Lee J-S, Ha TH, et al. Structural effects of naphthalimide-based fluorescent sensor for hydrogen sulfide and imaging in live zebrafish. Sci Rep. 2016;6(1):26203.  https://doi.org/10.1038/srep26203.CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Assémat E, Vinot S, Gofflot F, Linsel-Nitschke P, Illien F, Châtelet F, et al. Expression and role of cubilin in the internalization of nutrients during the Peri-implantation development of the rodent embryo. Biol Reprod. 2005;72(5):1079–86.  https://doi.org/10.1095/biolreprod.104.036913. CrossRefPubMedGoogle Scholar
  47. 47.
    Ulhaq M, Sundström M, Larsson P, Gabrielsson J, Bergman Å, Norrgren L, et al. Tissue uptake, distribution and elimination of 14C-PFOA in zebrafish (Danio rerio). Aquat Toxicol. 2015;163:148–57.  https://doi.org/10.1016/j.aquatox.2015.04.003.CrossRefPubMedGoogle Scholar
  48. 48.
    Choudhury S, Thomas JK, Sylvain NJ, Ponomarenko O, Gordon RA, Heald SM, et al. Selenium preferentially accumulates in the eye lens following embryonic exposure: a confocal X-ray fluorescence imaging study. Environ Sci Technol. 2015;49(4):2255–61.  https://doi.org/10.1021/es503848s.CrossRefPubMedGoogle Scholar
  49. 49.
    Den Broeder MJ, Kopylova VA, Kamminga LM, Legler J. Zebrafish as a model to study the role of peroxisome proliferating-activated receptors in adipogenesis and obesity. PPAR Res. 2015;2015:11.  https://doi.org/10.1155/2015/358029.Google Scholar
  50. 50.
    Michalik L, Desvergne B, Dreyer C, Gavillet M, Laurini RN, Wahli W. PPAR expression and function during vertebrate development. Int J Dev Biol. 2002;46(1):105–14.PubMedGoogle Scholar
  51. 51.
    Jaillon O, Aury J-M, Brunet F, Petit J-L, Stange-Thomann N, Mauceli E, et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature. 2004;431(7011):946–57. http://www.nature.com/nature/journal/v431/n7011/suppinfo/nature03025_S1.html CrossRefPubMedGoogle Scholar
  52. 52.
    Bertrand S, Thisse B, Tavares R, Sachs L, Chaumot A, Bardet P-L, et al. Unexpected novel relational links uncovered by extensive developmental profiling of nuclear receptor expression. PLoS Genet. 2007;3(11):e188.  https://doi.org/10.1371/journal.pgen.0030188.CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Levi L, Ziv T, Admon A, Levavi-Sivan B, Lubzens E. Insight into molecular pathways of retinal metabolism, associated with vitellogenesis in zebrafish. Am J Physiol - Endocrinol Metab. 2012;302(6):E626–E44.  https://doi.org/10.1152/ajpendo.00310.2011. CrossRefPubMedGoogle Scholar
  54. 54.
    • Kalasekar SM, Zacharia E, Kessler N, Ducharme NA, Gustafsson J-Å, Kakadiaris IA, et al. Identification of environmental chemicals that induce yolk malabsorption in zebrafish using automated image segmentation. Reprod Toxicol. 2015;55:20–9.  https://doi.org/10.1016/j.reprotox.2014.10.022. This paper presents the development of a high throughput screening method to quantify yolk area in the zebrafish embryo exposed to toxicants. CrossRefPubMedGoogle Scholar
  55. 55.
    Raldúa D, André M, Babin PJ. Clofibrate and gemfibrozil induce an embryonic malabsorption syndrome in zebrafish. Toxicol Appl Pharmacol. 2008;228(3):301–14.  https://doi.org/10.1016/j.taap.2007.11.016.CrossRefPubMedGoogle Scholar
  56. 56.
    Duan J, Hu H, Zhang Y, Feng L, Shi Y, Miller MR, et al. Multi-organ toxicity induced by fine particulate matter PM2.5 in zebrafish (Danio rerio) model. Chemosphere. 2017;180:24–32.  https://doi.org/10.1016/j.chemosphere.2017.04.013.CrossRefPubMedGoogle Scholar
  57. 57.
    Johnson A, Carew E, Sloman KA. The effects of copper on the morphological and functional development of zebrafish embryos. Aquat Toxicol. 2007;84(4):431–8.  https://doi.org/10.1016/j.aquatox.2007.07.003. CrossRefPubMedGoogle Scholar
  58. 58.
    Almond KM, Trombetta LD. The effects of copper pyrithione, an antifouling agent, on developing zebrafish embryos. Ecotoxicology (Lond, Engl). 2016;25(2):389–98.  https://doi.org/10.1007/s10646-015-1597-3. CrossRefGoogle Scholar
  59. 59.
    Sant KE, Jacobs HM, Borofski KA, Chen P, Park Y, Timme-Laragy AR. Pancreas development and nutrient uptake and utilization are disrupted by embryonic exposures to the environmental toxicant perfluorooctanesulfonic acid in the zebrafish. FASEB J. 2017;31(1 Supplement):792.8.Google Scholar
  60. 60.
    Hagedorn M, Kleinhans FW, Artemov D, Pilatus U. Characterization of a major permeability barrier in the zebrafish embryo1. Biol Reprod. 1998;59(5):1240–50.  https://doi.org/10.1095/biolreprod59.5.1240.CrossRefPubMedGoogle Scholar
  61. 61.
    Hill AJ, Bello SM, Prasch AL, Peterson RE, Heideman W. Water permeability and TCDD-induced edema in zebrafish early-life stages2These authors contributed equally to this article. Toxicol Sci. 2004;78(1):78–87.  https://doi.org/10.1093/toxsci/kfh056. CrossRefPubMedGoogle Scholar
  62. 62.
    Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203(3):253–310.  https://doi.org/10.1002/aja.1002030302. CrossRefPubMedGoogle Scholar
  63. 63.
    Chlebowski AC, Garcia GR, La Du JK, Bisson WH, Truong L, Massey Simonich SL, et al. Mechanistic investigations into the developmental toxicity of nitrated and heterocyclic PAHs. Toxicol Sci. 2017;157(1):246–59.  https://doi.org/10.1093/toxsci/kfx035.CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Knecht AL, Goodale BC, Truong L, Simonich MT, Swanson AJ, Matzke MM, et al. Comparative developmental toxicity of environmentally relevant oxygenated PAHs. Toxicol Appl Pharmacol. 2013;271(2):266–75.  https://doi.org/10.1016/j.taap.2013.05.006.CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Rousseau ME, Sant KE, Borden LR, Franks DG, Hahn ME, Timme-Laragy AR. Regulation of Ahr signaling by Nrf2 during development: effects of Nrf2a deficiency on PCB126 embryotoxicity in zebrafish (Danio rerio). Aquat Toxicol (Amsterdam, Neth). 2015;167:157–71.  https://doi.org/10.1016/j.aquatox.2015.08.002. CrossRefGoogle Scholar
  66. 66.
    Liu H, Nie F-H, Lin H-Y, Ma Y, Ju X-H, Chen J-J, et al. Developmental toxicity, EROD, and CYP1A mRNA expression in zebrafish embryos exposed to dioxin-like PCB126. Environ Toxicol. 2016;31(2):201–10.  https://doi.org/10.1002/tox.22035.CrossRefPubMedGoogle Scholar
  67. 67.
    Chao S-J, Huang CP, Chen P-C, Huang C. Teratogenic responses of zebrafish embryos to decabromodiphenyl ether (BDE-209) in the presence of nano-SiO2 particles. Chemosphere. 2017;178:449–57.  https://doi.org/10.1016/j.chemosphere.2017.03.075.CrossRefPubMedGoogle Scholar
  68. 68.
    Shi G, Cui Q, Pan Y, Sheng N, Sun S, Guo Y, et al. 6:2 chlorinated polyfluorinated ether sulfonate, a PFOS alternative, induces embryotoxicity and disrupts cardiac development in zebrafish embryos. Aquat Toxicol. 2017;185:67–75.  https://doi.org/10.1016/j.aquatox.2017.02.002.CrossRefPubMedGoogle Scholar
  69. 69.
    Li Y, Han Z, Zheng X, Ma Z, Liu H, Giesy JP, et al. Comparison of waterborne and in ovo nanoinjection exposures to assess effects of PFOS on zebrafish embryos. Environ Sci Pollut Res. 2015;22(3):2303–10.  https://doi.org/10.1007/s11356-014-3527-y.CrossRefGoogle Scholar
  70. 70.
    Sulukan E, Köktürk M, Ceylan H, Beydemir Ş, Işik M, Atamanalp M et al. An approach to clarify the effect mechanism of glyphosate on body malformations during embryonic development of zebrafish (Daino rerio). Chemosphere 2017;180:77–85. doi:  https://doi.org/10.1016/j.chemosphere.2017.04.018.
  71. 71.
    Suvarchala G, Philip GH. Toxicity of 3,5,6-trichloro-2-pyridinol tested at multiple stages of zebrafish (Danio rerio) development. Environ Sci Pollut Res. 2016;23(15):15515–23.  https://doi.org/10.1007/s11356-016-6684-3.CrossRefGoogle Scholar
  72. 72.
    Pamanji R, Yashwanth B, Bethu MS, Leelavathi S, Ravinder K, Rao JV. Toxicity effects of profenofos on embryonic and larval development of zebrafish (Danio rerio). Environ Toxicol Pharmacol. 2015;39(2):887–97.  https://doi.org/10.1016/j.etap.2015.02.020.CrossRefPubMedGoogle Scholar
  73. 73.
    Zhuang S, Zhang Z, Zhang W, Bao L, Xu C, Zhang H. Enantioselective developmental toxicity and immunotoxicity of pyraclofos toward zebrafish (Danio rerio). Aquat Toxicol. 2015;159:119–26.  https://doi.org/10.1016/j.aquatox.2014.12.006.CrossRefPubMedGoogle Scholar
  74. 74.
    Oliveira JMM, Galhano V, Henriques I, Soares AMVM, Loureiro S. Basagran® induces developmental malformations and changes the bacterial community of zebrafish embryos. Environ Pollut. 2017;221:52–63.  https://doi.org/10.1016/j.envpol.2016.10.028.CrossRefPubMedGoogle Scholar
  75. 75.
    Xu C, Tu W, Deng M, Jin Y, Lu B, Zhang C, et al. Stereoselective induction of developmental toxicity and immunotoxicity by acetochlor in the early life stage of zebrafish. Chemosphere. 2016;164:618–26.  https://doi.org/10.1016/j.chemosphere.2016.09.004.CrossRefPubMedGoogle Scholar
  76. 76.
    Cao F, Liu X, Wang C, Zheng M, Li X, Qiu L. Acute and short-term developmental toxicity of cyhalofop-butyl to zebrafish (Danio rerio). Environ Sci Pollut Res. 2016;23(10):10080–9.  https://doi.org/10.1007/s11356-016-6236-x.CrossRefGoogle Scholar
  77. 77.
    Choi JS, Kim R-O, Yoon S, Kim W-K. Developmental toxicity of zinc oxide nanoparticles to zebrafish (Danio rerio): a transcriptomic analysis. PLoS One. 2016;11(8):e0160763.  https://doi.org/10.1371/journal.pone.0160763.CrossRefPubMedCentralPubMedGoogle Scholar
  78. 78.
    Shaw BJ, Liddle CC, Windeatt KM, Handy RD. A critical evaluation of the fish early-life stage toxicity test for engineered nanomaterials: experimental modifications and recommendations. Arch Toxicol. 2016;90(9):2077–107.  https://doi.org/10.1007/s00204-016-1734-7.CrossRefPubMedGoogle Scholar
  79. 79.
    Duan J, Yu Y, Shi H, Tian L, Guo C, Huang P, et al. Toxic effects of silica nanoparticles on zebrafish embryos and larvae. PLoS One. 2013;8(9):e74606.  https://doi.org/10.1371/journal.pone.0074606.CrossRefPubMedCentralPubMedGoogle Scholar
  80. 80.
    Nogales FF, Beltran E, Fernandez PL. The pathology of secondary human yolk sac in spontaneous abortion: findings in 103 cases. In: Fenoglio-Preiser CM, Wolff M, Rilke F, editors. Progress in Surgical Pathology: Volume XII. Berlin: Springer Berlin Heidelberg; 1992. p. 291–303.CrossRefGoogle Scholar
  81. 81.
    Pinney SE, Mesaros CA, Snyder NW, Busch CM, Xiao R, Aijaz S, et al. Second trimester amniotic fluid bisphenol a concentration is associated with decreased birth weight in term infants. Reprod Toxicol. 2017;67:1–9.  https://doi.org/10.1016/j.reprotox.2016.11.007.CrossRefPubMedGoogle Scholar
  82. 82.
    Watkins DJ, Milewski S, Domino SE, Meeker JD, Padmanabhan V. Maternal phthalate exposure during early pregnancy and at delivery in relation to gestational age and size at birth: a preliminary analysis. Reprod Toxicol (Elmsford, NY). 2016;65:59–66.  https://doi.org/10.1016/j.reprotox.2016.06.021.CrossRefGoogle Scholar
  83. 83.
    Chen M-H, Ng S, Hsieh C-J, Lin C-C, Hsieh W-S, Chen P-C. The impact of prenatal perfluoroalkyl substances exposure on neonatal and child growth. Sci Total Environ. 2017;607–608:669–75.  https://doi.org/10.1016/j.scitotenv.2017.06.273.CrossRefPubMedGoogle Scholar
  84. 84.
    Starling AP, Adgate JL, Hamman RF, Kechris K, Calafat AM, Ye X, et al. Perfluoroalkyl substances during pregnancy and offspring weight and adiposity at birth: examining mediation by maternal fasting glucose in the healthy start study. Environ Health Perspect. 2017;125(6):067016.  https://doi.org/10.1289/ehp641. CrossRefPubMedCentralPubMedGoogle Scholar
  85. 85.
    Liu A, Qian N, Yu H, Chen R, Kan H. Estimation of disease burdens on preterm births and low birth weights attributable to maternal fine particulate matter exposure in Shanghai, China. Sci Total Environ. 2017;609:815–21.  https://doi.org/10.1016/j.scitotenv.2017.07.174.CrossRefPubMedGoogle Scholar
  86. 86.
    Cindrova-Davies T, Jauniaux E, Elliot MG, Gong S, Burton GJ, Charnock-Jones DS. RNA-seq reveals conservation of function among the yolk sacs of human, mouse, and chicken. Proc Natl Acad Sci. 2017;114(24):E4753–61.  https://doi.org/10.1073/pnas.1702560114.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Environmental Health Sciences, School of Public Health and Health SciencesUniversity of MassachusettsAmherstUSA

Personalised recommendations