Advertisement

Friction

pp 1–8 | Cite as

Rubber plunger surface texturing for friction reduction in medical syringes

  • Haytam Kasem
  • Harel Shriki
  • Lihi Ganon
  • Michael Mizrahi
  • Kareem Abd-Rbo
  • Abraham J. Domb
Open Access
Research Article
  • 29 Downloads

Abstract

Friction is a genuine issue in the use of many medical devices involving rubbery materials such as plungers in medical syringes. This paper presents a new direction for the reduction of friction in medical syringes based on surface texturing of the rubber plunger. The specimens were prepared by casting poly(vinylsiloxane) (PVS) rubber into a pre-fabricated negative template obtained by 3D printing. Friction tests were performed on a home-made test-rig. It was clearly shown that friction resistance can be considerably manipulated when using textured plungers.

Keywords

syringe rubber plunger surface texturing friction medical syringes 

Notes

Acknowledgements

The negative templates for the casting of textured plungers were prepared at the Center for Functional and 3D Printing, at the Hebrew University of Jerusalem. The experimental test-rig was funded by Maof Fellowships, the Council for Higher Education of Israel (Dr. H. Kasem), and the MIA program the Ministry of Science, Technology & Space (Prof. A. Domb).

References

  1. [1]
    Bowden F O, Tabor D. The Friction and Lubrication of Solids. 2nd ed. Oxford (UK): Clarendon Press, 2001.zbMATHGoogle Scholar
  2. [2]
    Rabinowitz E. Friction and Wear of Materials. 2nd ed. New York (USA): John Wiley & Sons, 1995.Google Scholar
  3. [3]
    Smith R H. Analyzing Friction in the Design of Rubber Products and Their Paired Surfaces. CRC Press, Taylor & Francis Group NW, Book Number 13: 978-0-8493-8136-2, 2008.CrossRefGoogle Scholar
  4. [4]
    Thirion P. Les coefficients d’adherence du caouchouc. (in French). Rev Gen Caoutch 23: 101 (1946)Google Scholar
  5. [5]
    Grosch K A. The relation between the friction and viscoelastic properties of rubber. Proc Roy Soc London Ser A: Math Phys Sci 274(1356): 21–39 (1963)CrossRefGoogle Scholar
  6. [6]
    Muhr A H, Roberts A D. Rubber abrasion and wear. Wear 158(1–2): 213–228 (1992)CrossRefGoogle Scholar
  7. [7]
    Roth F L, Driscoll R L, Holt W L. Frictional proprieties of rubber. J Res Nat Bur Stds 28: 439 (1942)CrossRefGoogle Scholar
  8. [8]
    Schallamach. How does rubber slide? Wear 17(4): 301–312 (1971)Google Scholar
  9. [9]
    Barquins M. Sliding friction of rubber and Schallamach waves — A review. Mater Sci Eng 73: 45–63 (1985)CrossRefGoogle Scholar
  10. [10]
    Gross J R. Low friction syringe. U.S. Patent 5 397 313A, Mar. 1995.Google Scholar
  11. [11]
    Merry J D. Low friction syringe. U.S. Patent 4 26557A, May 1981.Google Scholar
  12. [12]
    Kwon J, Cheung E, Park S, Sitti M. Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces. Biomed Mater 1(4): 216–220 (2006)CrossRefGoogle Scholar
  13. [13]
    Tsipenyuk A, Varenberg M. Use of biomimetic hexagonal surface texture in friction against lubricated skin. J Roy Soc Interface 11(94): 20140113 (2014)CrossRefGoogle Scholar
  14. [14]
    Etsion I. State of the art in laser surface texturing. J Tribol 127(1): 248–253 (2005)CrossRefGoogle Scholar
  15. [15]
    Gachot C, Rosenkranz A, Hsu S M, Costa H L. A critical assessment of surface texturing for friction and wear improvement. Wear 372–373: 21–41 (2017)CrossRefGoogle Scholar
  16. [16]
    Etsion I, Kligerman Y, Halperin G. Analytical and experimental investigation of laser-textured mechanical seal faces. Trib Trans 42(3): 511–516 (1999)CrossRefGoogle Scholar
  17. [17]
    Etsion I, Halperin G, Ryk G. J Balkan Tribol Assoc 6: 72–77 (2000)Google Scholar
  18. [18]
    Hadinata P C, Stephens L S. Soft elastohydrodynamic analysis of radial lip seals with deterministic microasperities on the shaft. J Tribol 129(4): 851–859 (2007)CrossRefGoogle Scholar
  19. [19]
    Shinkarenko A, Kligerman Y, Etsion I. The effect of surface texturing in soft elasto-hydrodynamic lubrication. Tribol Int 42(2): 284–292 (2009)CrossRefGoogle Scholar
  20. [20]
    Shi F H, Salant R F. Numerical study of a rotary lip seal with a quasi-random sealing surface. J Tribol 123(3): 517–524 (2001)CrossRefGoogle Scholar
  21. [21]
    Salant R F, Maser N, Yang B. Numerical model of a reciprocating hydraulic rod seal. J Tribol 129(1): 91–97 (2006)CrossRefGoogle Scholar
  22. [22]
    Nikas G K. Theoretical study of solid back-up rings for elastomeric seals in hydraulic actuators. Tribol Int 37(9): 689–699 (2004)CrossRefGoogle Scholar
  23. [23]
    Stupkiewicz S, Marciniszyn A. Elastohydrodynamic lubrication and finite configuration changes in reciprocating elastomeric seals. Tribol Int 42(5): 615–627 (2009)CrossRefGoogle Scholar
  24. [24]
    Hirani H, Verma M. Tribological study of elastomeric bearings for marine propeller shaft system. Tribol Int 42(2): 378–390 (2009)CrossRefGoogle Scholar
  25. [25]
    Bohan M F J, Lim C H, Korochkina T V, Claypole T C, Gethin D T, Roylance B J. An investigation of the hydrodynamic and mechanical behaviour of a soft nip rolling contact. Proc Instit Mechan Eng J: J Eng Tribol 211(1): 37–49 (1997)CrossRefGoogle Scholar
  26. [26]
    Kasem H, Tsipenyuk A, Varenberg M. Biomimetic wallshaped hierarchical microstructure for gecko-like attachment. Soft Matter 11(15): 2909–2915 (2015)CrossRefGoogle Scholar
  27. [27]
    Tuma J. U.S. Patent 20070063375 A1. 2007.Google Scholar
  28. [28]
    Ronen A, Etsion I, Kligerman Y. Friction-reducing surfacetexturing in reciprocating automotive components. Tribol Trans 44(3): 359–366 (2001)CrossRefGoogle Scholar
  29. [29]
    Ryk G, Kligerman Y, Etsion I. Experimental investigation of laser surface texturing for reciprocating automotive components. Tribol Trans 45(4): 444–449 (2002)CrossRefGoogle Scholar
  30. [30]
    Peressadko A, Gorb S N. When less is more: Experimental evidence for tenacity enhancement by division of contact area. J Adhes 80(4): 247–261 (2004)CrossRefGoogle Scholar
  31. [31]
    Reynolds O. On the theory of lubrication and its applications. Proc R Soc Lond Ser A-Math Phys Eng Sci 40: 191–203 (1886)Google Scholar
  32. [32]
    Stachowiak G W, Batchelor A W. Engineering Tribology. Boston (UK): Butterworth Heinemann, 2001.Google Scholar
  33. [33]
    Williams J A. Engineering Tribology. Oxford (UK): Oxford University Press, 1994.Google Scholar
  34. [34]
    Cameron A, Ettles C M M. Basic Lubrication Theory. Chichester: Ellis Horwood Ltd., 1983.Google Scholar

Copyright information

© The author(s) 2018

Authors and Affiliations

  • Haytam Kasem
    • 1
    • 2
  • Harel Shriki
    • 1
  • Lihi Ganon
    • 1
  • Michael Mizrahi
    • 3
  • Kareem Abd-Rbo
    • 1
    • 3
  • Abraham J. Domb
    • 3
  1. 1.Department of Mechanical EngineeringAzrieli College of EngineeringJerusalemIsrael
  2. 2.Tribology LaboratoryDepartment of Mechanical EngineeringTechnion, HaifaIsrael
  3. 3.School of Pharmacy, Faculty of Medicinethe Hebrew UniversityJerusalemIsrael

Personalised recommendations