Advertisement

The Roadmap From Allergic Rhinitis to Asthma

  • Ricardo J. SaranzEmail author
  • Alejandro Lozano
  • Natalia A. Lozano
  • Graciela Alegre
  • Marina F. Ponzio
Allergic Rhinitis (J Maspero, Section Editor)
  • 9 Downloads
Part of the following topical collections:
  1. Topical Collection on Allergic Rhinitis
  2. Topical Collection on Allergic Rhinitis

Abstract

Purpose of review

Upper and lower airways display some common characteristic described as a holistic model. Because rhinitis may proceed asthma, it is imperative to understand the mechanisms and risk factors responsible for the progression from rhinitis to asthma.

Recent findings

Subclinical lower airway abnormalities have been observed in patients with rhinitis without asthma. Recent evidence indicates that these patients may have an increased risk of developing asthma. Environmental and genetic factors can contribute to enhance this possibility. The treatments of rhinitis have also been shown to be beneficial to the lower airway, and therefore potentially modify the natural evolution of the atopic march.

Summary

Lower airway disease is a good predictor for the roadmap from rhinitis to asthma. The shared genetic link and environmental factors could be essential for this progression. Albeit treatment of rhinitis has a beneficial effect on lower airway defects, their role to prevent the progression to asthma remains yet to be confirmed.

Keywords

Rhinitis Lung function tests Bronchial hyper-reactivity Airway remodeling Allergic march Genetic linkage analyses 

Notes

Funding

The present review was performed with funds from the Secretaría de Investigación, Universidad Católica de Córdoba.

Compliance with Ethical Standards

Conflict of Interest

Ricardo Saranz declares that he has no conflict of interest. Alejandro Lozano declares that he has no conflict of interest. Natalia Lozano declares that she has no conflict of interest. Graciela Alegre declares that she has no conflict of interest. Marina Ponzio Biol declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Bousquet J, Van Cauwenberge P. Khaltaev N and Aria Workshop Group. Allergic rhinitis and its impact on asthma. ARIA workshop report. J Allergy Clin Immunol. 2001;108:S147–334.CrossRefGoogle Scholar
  2. 2.
    Cruz A. The “united airways” require an holistic approach to management. Allergy. 2005;60:871–4.  https://doi.org/10.1111/j.1398-9995.2005.00858.x.CrossRefPubMedGoogle Scholar
  3. 3.
    Giavina-Bianchi P, Aun MV, Takejima P, Kalil J, Agondi RC. United airway disease: current perspectives. J Asthma Allergy. 2016;9:93–100.  https://doi.org/10.2147/JAA.S81541.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Boulay ME, Morin A, Laprise C, Boulet LP. Asthma and rhinitis: what is the relationship? Curr Opin Allergy Clin Immunol. 2012;12:449–54.  https://doi.org/10.1097/ACI.0b013e328357cc32.CrossRefPubMedGoogle Scholar
  5. 5.
    • Saranz RJ, Lozano A, Lozano NA, Ponzio MF, Cruz ÁA. Subclinical lower airways correlates of chronic allergic and non-allergic rhinitis. Clin Exp Allergy. 2017;47:988–97.  https://doi.org/10.1111/cea.12938The authors review the lower airway abnormalities in chronic rhinitis.CrossRefPubMedGoogle Scholar
  6. 6.
    •• Togias A, Gergen PJ, Hu JW, Babineau DC, Wood RA, Cohen RT, et al. Rhinitis in children and adolescents with asthma: ubiquitous, difficult to control, and associated with asthma outcomes. J Allergy Clin Immunol. 2019;143:1003–11.  https://doi.org/10.1016/j.jaci.2018.07.041The aim of this excellent investigation was to determine the prevalence of different phenotypes of rhinitis in children and adolescents with asthma.CrossRefPubMedGoogle Scholar
  7. 7.
    Eriksson J, Bjerg A, Lötvall J, Wennergren G, Rönmark E, Torén K, et al. Rhinitis phenotypes correlate with different symptom presentation and risk factor patterns of asthma. Respir Med. 2011;105:1611–21.  https://doi.org/10.1016/j.rmed.2011.06.004.CrossRefPubMedGoogle Scholar
  8. 8.
    Leynaert B, Bousquet J, Neukirch C, Korobaeff M, Liard R, Neukirch F. Perennial rhinitis: an independent risk factor for asthma in nonatopic subjects. Results from the European Community Respiratory Health Survey. J Allergy Clin Immunol. 1999;104:301–4.CrossRefGoogle Scholar
  9. 9.
    Higuchi O, Adachi Y, Itazawa T, Ito Y, Yoshida K, Ohya Y, et al. Rhinitis has an association with asthma in school children. Am J Rhinol Allergy. 2013;27:e22–5.  https://doi.org/10.2500/ajra.2013.27.3846.CrossRefPubMedGoogle Scholar
  10. 10.
    Chawes BL, Bønnelykke K, Kreiner-Møller E, Bisgaard H. Children with allergic and nonallergic rhinitis have a similar risk of asthma. J Allergy Clin Immunol. 2010;126:567–73.  https://doi.org/10.1016/j.jaci.2010.06.026.CrossRefPubMedGoogle Scholar
  11. 11.
    Leynaert B, Neukirch C, Kony S, Guénégou A, Bousquet J, Aubier M, et al. Association between asthma and rhinitis according to atopic sensitization in a population-based study. J Allergy Clin Immunol. 2004;113:86–93.  https://doi.org/10.1016/j.jaci.2003.10.010.CrossRefPubMedGoogle Scholar
  12. 12.
    Settipane RJ, Hagy GW, Settipane GA. Long-term risk factors for developing asthma and allergic rhinitis: a 23-year follow-up study of college students. Allergy Proc. 1994;15:21–5.CrossRefGoogle Scholar
  13. 13.
    Shaaban R, Zureik M, Soussan D, Neukirch C, Heinrich J, Sunyer J, et al. Rhinitis and onset of asthma: a longitudinal population-based study. Lancet. 2008;372:1049–57.  https://doi.org/10.1016/S0140-6736(08)61446-4.CrossRefPubMedGoogle Scholar
  14. 14.
    •• Carr TF, Stern DA, Halonen M, Wright AL, Martinez FD. Non-atopic rhinitis at age 6 isassociated with subsequent development of asthma. Clin Exp Allergy. 2019;49:35–43.  https://doi.org/10.1111/cea.13276This is the first longitudinal study that analyzes the evolution of rhinitis to asthma since childhood.CrossRefPubMedGoogle Scholar
  15. 15.
    Saranz RJ, Lozano A, Lozano NA, Sosa Aguirre AG, Alegre G. Mecanismos de la conexión nariz-pulmón. Methodo. 2017;2:3–15.  https://doi.org/10.22529/me.2017.2(1)02.CrossRefGoogle Scholar
  16. 16.
    • Kanda A, Kobayashi Y, Asako M, Tomoda K, Kawauchi H, Iwai H. Regulation of interaction between the upper and lower airways in united airway disease. Med Sci (Basel) 2019;7 (2).  https://doi.org/10.3390/medsci7020027The last review about the etiology and mechanisms of united airway disease.
  17. 17.
    Corren J, Adinoff AD, Irvin CG. Changes in bronchial responsiveness following nasal provocation with allergen. J Allergy Clin Immunol. 1992;89:611–8.CrossRefGoogle Scholar
  18. 18.
    Braunstahl GJ. The unified immune system: respiratory tract—nasobronchial interaction mechanisms in allergic airway disease. J Allergy Clin Immunol. 2005;115:142–8.  https://doi.org/10.1016/j.jaci.2004.10.041.CrossRefPubMedGoogle Scholar
  19. 19.
    McFadden ER Jr. Nasal-sinus-pulmonary reflexes and bronchial asthma. J Allergy Clin Immunol. 1986;78:1–5.CrossRefGoogle Scholar
  20. 20.
    Bardin P, VanHeerden B, Joubert J. Absence of pulmonary aspiration of sinus contents in patients with asthma and sinusitis. J Allergy Clin Immunol. 1990;86:82–8.CrossRefGoogle Scholar
  21. 21.
    Braunsthal GJ, Overbeek S, KleinJan A, Prins JB, Hoogsteden H, Fokkens W. Nasal allergen provocation induces adhesion molecules expression and tissue eosinophilia in upper and lower airways. J Allergy Clin Immunol. 2001;107:469–76.CrossRefGoogle Scholar
  22. 22.
    Braunstahl GJ, Overbeek SE, Fokkens WJ, Kleinjan A, McEuen AR, et al. Segmental bronchoprovocation in allergic rhinitis patients affects mast cell and basophil numbers in nasal and bronchial mucosa. Am J Respir Crit Care Med. 2001;164:858–65.  https://doi.org/10.1164/ajrccm.164.5.2006082.CrossRefPubMedGoogle Scholar
  23. 23.
    Kariyawasam HH, Rotiroti G. Allergic rhinitis, chronic rhinosinusitis and asthma: unravelling a complex relationship. Curr Opin Otolaryngol Head Neck Surg. 2013;21:79–86.  https://doi.org/10.1097/MOO.0b013e32835ac640.CrossRefPubMedGoogle Scholar
  24. 24.
    Liu Y, Zeng M, Liu Z. Th17 response and its regulation in inflammatory upper airway diseases. Clin Exp Allergy. 2015;45:602–12.  https://doi.org/10.1111/cea.12378.CrossRefPubMedGoogle Scholar
  25. 25.
    Cheng KJ, Zhou ML, Xu YY, Zhou SH. The role of local allergy in the nasal inflammation. Eur Arch Otorhinolaryngol. 2017;274:3275–81.  https://doi.org/10.1007/s00405-017-4640-6.CrossRefPubMedGoogle Scholar
  26. 26.
    Rondón C, Bogas G, Barrionuevo E, Blanca M, Torres MJ, Campo P. Nonallergic rhinitis and lower airway disease. Allergy. 2017;72:24–34.  https://doi.org/10.1111/all.12988.CrossRefPubMedGoogle Scholar
  27. 27.
    Townley RG, Ryo UY, Kolotkin BM, Kang B. Bronchial sensitivity to methacholine in current and former asthmatic and allergic rhinitis patients and control subjects. J Allergy Clin Immunol. 1975;56:429–42.CrossRefGoogle Scholar
  28. 28.
    Cockcroft DW, Killian DN, Mellon JJA, Hargreave FE. Bronchial reactivity to inhaled histamine: a method and clinical survey. Clin Allergy. 1977;7:235–43.CrossRefGoogle Scholar
  29. 29.
    Ramsdale HE, Morris MM, Roberts RS, Hargreave FE. Asymptomatic bronchial hyper-responsiveness in rhinitis. J Allergy Clin Immunol. 1985;75:573–7.CrossRefGoogle Scholar
  30. 30.
    Braman SS, Barrows AA, DeCotiis BA, Settipane GA, Corrao WM. Airway hyperresponsiveness in allergic rhinitis. A risk factor for asthma. Chest. 1987;91:671–4.CrossRefGoogle Scholar
  31. 31.
    Prieto L, Gutiérrez V, Liñana J, Marín J. Bronchoconstriction induced by inhaled adenosine 5′-monophosphate in subjects with allergic rhinitis. Eur Respir J. 2001;17:64–70.CrossRefGoogle Scholar
  32. 32.
    Choi SH, Yoo Y, Yu J, Rhee CS, Min YG, Koh YY. Bronchial hyperresponsiveness in young children with allergic rhinitis and its risk factors. Allergy. 2007;62:1051–6.  https://doi.org/10.1111/j.1398-9995.2007.01403.x.CrossRefPubMedGoogle Scholar
  33. 33.
    Cirillo I, Pistorio A, Tosca M, Ciprandi G. Impact of allergic rhinitis on asthma: effects on bronchial hyperreactivity. Allergy. 2009;64:439–44.  https://doi.org/10.1111/j.1398-9995.2008.01851.x.CrossRefPubMedGoogle Scholar
  34. 34.
    Rakkhong K, Kamchaisatian W, Vilaiyuk S, Sasisakulporn C, Teawsomboonkit W, Pornsuriyasak P, et al. Exercise-induced bronchoconstriction in rhinitis children without asthma. Asian Pac J Allergy Immunol. 2011;29:278–83.PubMedGoogle Scholar
  35. 35.
    Kim SW, Han DH, Lee SJ, Lee CH, Rhee CS. Bronchial hyperresponsiveness in pediatric rhinitis patients: the difference between allergic and nonallergic rhinitis. Am J Rhinol Allergy. 2013;27:63–8.  https://doi.org/10.2500/ajra.2013.27.3877.CrossRefGoogle Scholar
  36. 36.
    Wang Q, Ji J, Xie Y, Guan W, Zhan Y, Wang Z, et al. Lower airway inflammation and hyperresponsiveness in nonasthmatic patients with non-allergic rhinitis. J Thorac Dis. 2015;7:1756–64.  https://doi.org/10.3978/j.issn.2072-1439.2015.10.26.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Karaatmaca B, Gur Cetinkaya P, Esenboga S, Ozer M, Soyer O, Karabulut E, et al. Bronchial hyperresponsiveness in children with allergic rhinitis and the associated risk factors. Allergy. 2019.  https://doi.org/10.1111/all.13755.
  38. 38.
    Prieto L, Gutiérrez V, Morales C, Perpinan J, Inchaurraga I. Variability of peak flow rate in allergic rhinitis and mild asthma: relationship to maximal airway narrowing. Ann Allergy Asthma Immunol. 1998;80:151–8.CrossRefGoogle Scholar
  39. 39.
    Koh YY, Kang EK, Min YG, Kim CK. The importance of maximal airway response to methacholine in the prediction of asthma development in patients with allergic rhinitis. Clin Exp Allergy. 2002;32:921–7.  https://doi.org/10.1046/j.1365-2222.2002.01399.x.CrossRefPubMedGoogle Scholar
  40. 40.
    •• Haccuria A, Van Muylem A, Malinovschi A, Doan V, Michils A. Small airways dysfunction: the link between allergic rhinitis and allergic asthma. Eur Respir J. 2018;51:1701749.  https://doi.org/10.1183/13993003.01749-2017This paper provides evidence of small airway dysfunction in patients with allergic rhinitis.CrossRefPubMedGoogle Scholar
  41. 41.
    Ciprandi G, Tosca MA, Signori A, Cirillo I. Bronchial hyperreactivity in patients with allergic rhinitis: forced expiratory flow between 25 and 75% of vital capacity might be a predictive factor. Allergy Asthma Proc. 2011;32:4–8.  https://doi.org/10.2500/aap.2011.32.3425.CrossRefPubMedGoogle Scholar
  42. 42.
    Ciprandi G, Cirillo I, Pistorio A. Impact of allergic rhinitis on asthma: effects on spirometric parameters. Allergy. 2008;63:255–60.  https://doi.org/10.1111/j.1398-9995.2007.01544.x.CrossRefPubMedGoogle Scholar
  43. 43.
    Kessel A, Halloun H, Bamberger E, Kugelman A, Toubi E. Abnormal spirometry in children with persistent allergic rhinitis due to mite sensitization: the benefit of nasal corticosteroids. Pediatr Allergy Immunol. 2008;19:61–6.  https://doi.org/10.1111/j.1399-3038.2007.00588.x.CrossRefPubMedGoogle Scholar
  44. 44.
    Ciprandi G, Capasso M. Association of childhood perennial allergic rhinitis with subclinical airflow limitation. Clin Exp Allergy. 2010;40:398–402.  https://doi.org/10.1111/j.1365-2222.2009.03399.x.CrossRefPubMedGoogle Scholar
  45. 45.
    Ciprandi G, Signori A, Tosca MA, Cirillo I. Bronchodilation test in patients with allergic rhinitis. Allergy. 2011;66:694–8.  https://doi.org/10.1111/j.1398-9995.2011.02544.x.CrossRefPubMedGoogle Scholar
  46. 46.
    Ianiero L, Saranz RJ, Lozano NA, Lozano A, Sasia LV, Ramírez M, et al. Análisis de la curva flujo-volumen en niños y adolescentes con rinitis alérgica sin asma. Arch Argent Pediatr. 2013;111:322–7.  https://doi.org/10.5546/aap.2013.322.CrossRefPubMedGoogle Scholar
  47. 47.
    Saranz RJ, Lozano A, Valero A, Lozano NA, Bovina Martijena MD, Agresta F, et al. Impact of rhinitis on lung function in children and adolescents without asthma. Allergol Immunopathol (Madr). 2016;44:556–62.  https://doi.org/10.1016/j.aller.2016.04.006.CrossRefGoogle Scholar
  48. 48.
    Kim YH, Park HB, Kim MJ, Kim HS, Lee HS, Han YK, et al. Fractional exhaled nitric oxide and impulse oscillometry in children with allergic rhinitis. Allergy, Asthma Immunol Res. 2014;6:27–32.  https://doi.org/10.4168/aair.2014.6.1.27.CrossRefGoogle Scholar
  49. 49.
    •• Skylogianni E, Triga M, Douros K, Bolis K, Priftis KN, Fouzas S, et al. Small-airway dysfunction precedes the development of asthma in children with allergic rhinitis. Allergol Immunpathol. 2018;46:313–2.  https://doi.org/10.1016/j.aller.2017.09.025This study suggests that changes in respiratory impedance in children with allergic rhinitis might help to predict progression to asthma.CrossRefGoogle Scholar
  50. 50.
    Capasso M, Varricchio A, Ciprandi G. Impact of allergic rhinitis on asthma in children: effects on bronchodilation test. Allergy. 2010;65:264–8.CrossRefGoogle Scholar
  51. 51.
    Foresi A, Leone C, Pelucchi A, Mastropasqua B, Chetta A, D’Ippolito R, et al. Eosinophils, mast cells and basophils in induced sputum from patients with seasonal allergic rhinitis and perennial asthma: relationship to methacoline responsiveness. J Allergy Clin Immunol. 1997;100:58–64.CrossRefGoogle Scholar
  52. 52.
    Bonay M, Neukirch C, Grandsaigne M, Leçon-Malas V, Ravaud P, Dehoux M, et al. Changes in airway inflammation following nasal allergic challenge in patients with seasonal rhinitis. Allergy. 2006;61:111–8.  https://doi.org/10.1111/j.1398-9995.2006.00967.x.CrossRefPubMedGoogle Scholar
  53. 53.
    Makris MP, Gratziou C, Aggelides XS, Koulouris SP, Koti I, Kalogeromitros DC, et al. Exhaled nitric oxide, bronchial hyper-responsiveness and spirometric parameters in patients with allergic rhinitis during pollen season. Iran J Allergy Asthma Immunol. 2011;10:251–60 010.04/ijaai.251260.PubMedGoogle Scholar
  54. 54.
    Kalpaklioglu AF, Kalkan IK. Comparison of orally exhaled nitric oxide in allergic versus non-allergic rhinitis. Am J Rhinol Allergy. 2012;26:e50–4.  https://doi.org/10.2500/ajra.2012.26.3717.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Panzner P, Malkusová I, Vachová M, Liska M, Brodská P, Růžičková O, et al. Bronchial inflammation in seasonal allergic rhinitis with or without asthma in relation to natural exposure to pollen allergen. Allergol Immunopathol (Madr). 2015;43:3–9.  https://doi.org/10.1016/j.aller.2013.06.009.CrossRefGoogle Scholar
  56. 56.
    Wang W, Xian M, Xie Y, Zheng J, Li J. Aggravation of airway inflammation and hyper-responsiveness following nasal challenge with Dermatophagoides pteronyssinus in perennial allergic rhinitis without symptoms of asthma. Allergy. 2016;71:378–86.  https://doi.org/10.1111/all.12808.CrossRefPubMedGoogle Scholar
  57. 57.
    Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med. 2011;184:602–15.  https://doi.org/10.1164/rccm.9120-11ST.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Ciprandi G, Ricciardolo FLM, Schiavetti I, Cirillo I. Allergic rhinitis phenotypes based on bronchial hyperreactivity to methacholine. Am J Rhinol Allergy. 2014;18:e214–8.  https://doi.org/10.2500/ajra.2014.28.4124.CrossRefGoogle Scholar
  59. 59.
    Khan DA. Allergic rhinitis and asthma: epidemiology and common pathophysiology. Allergy Asthma Proc. 2014;35:357–61.  https://doi.org/10.2500/aap.2014.35.3794.CrossRefPubMedGoogle Scholar
  60. 60.
    Xia S, Zhu Z, Guan WJ, Xie YQ, An JY, Peng T, et al. Correlation between upper and lower airway inflammations in patients with combined allergic rhinitis and asthma syndrome: a comparison of patients initially presenting with allergic rhinitis and those initially presenting with asthma. Exp Ther Med. 2018;15:1761–7.  https://doi.org/10.3892/etm.2017.5536.CrossRefPubMedGoogle Scholar
  61. 61.
    Choi BS, Kim KW, Lee YJ, Baek J, Park HB, Kim YH, et al. Exhaled nitric oxide is associated with allergic inflammation in children. J Korean Med Sci. 2011;26:1265–9.  https://doi.org/10.3346/jkms.2011.26.10.1265.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Samitas K, Carter A, Kariyawasam HH, Xanthou G. Upper and lower airway remodeling mechanisms in asthma, allergic rhinitis and chronic rhinosinusitis: the one airway concept revisited. Allergy. 2018;73:993–1002.  https://doi.org/10.1111/all.13373.CrossRefPubMedGoogle Scholar
  63. 63.
    Chen ZY, Zhou SH, Zhou QF, Tang HB. Inflammation and airway remodeling of the lung in guinea pigs with allergic rhinitis. Exp Ther Med. 2017;14:3485–90.  https://doi.org/10.3892/etm.2017.4937.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Yılmaz I, Bayraktar N, Ceyhan K, Seçil D, Yüksel S, Mısırlıgil Z, et al. Evaluation of vascular endothelial growth factor A and endostatin levels in induced sputum and relationship to bronchial hyperreactivity in patients with seasonal allergic rhinitis. Am J Rhinol Allergy. 2013;27:181–6.  https://doi.org/10.2500/ajra.2013.27.3867.CrossRefPubMedGoogle Scholar
  65. 65.
    Yang MS, Lee HA, Kim MH, Song WJ, Kim TW, Kwon JW, et al. Rhinitis patients with sputum eosinophilia show decreased lung function in the absence of airway hyperresponsiveness. Allergy, Asthma Immunol Res. 2013;5:232–8.  https://doi.org/10.4168/aair.2013.5.4.232.CrossRefGoogle Scholar
  66. 66.
    Prieto L, Bertó JM, Gutierrez V. Airway responsiveness to methacholine and risk of asthma in patients with allergic rhinitis. Ann Allergy. 1994;72:534–9.PubMedGoogle Scholar
  67. 67.
    Añibarro B, García-Ara MC, Díaz MF, Boyano T, Ojeda JA. Nonspecific bronchial hyperresponsiveness and development of asthma in children with hay fever. Pediatr Allergy Immunol. 1995;6:200–3.CrossRefGoogle Scholar
  68. 68.
    Ferdousi HA, Zetterstrom O, Dreborg S. Bronchial hyperresponsiveness predicts the development of mild clinical asthma within 2 yr in school children with hay-fever. Pediatr Allergy Immunol. 2005;16:478–86.  https://doi.org/10.1111/j.1399-3038.2005.00296.x.CrossRefPubMedGoogle Scholar
  69. 69.
    Di Cara G, Marcucci F, Palomba A, Milioni M, Pecoraro L, Ciprandi G, et al. Exhaled nitric oxide in children with allergic rhinitis: a potential biomarker of asthma development. Pediatr Allergy Immunol. 2014;26:85–7.  https://doi.org/10.1111/pai.12326.CrossRefGoogle Scholar
  70. 70.
    • Ciprandi G, Gallo F, Ricciardolo FL, Cirillo I. Fractional exhaled nitric oxide: a potential biomarker in allergic rhinitis? Int Arch Allergy Immunol. 2017;172:99–105.  https://doi.org/10.1159/000456548This study highlights the relevance of FeNO in allergic rhinitis patients as a possible predictive marker for asthma development.CrossRefPubMedGoogle Scholar
  71. 71.
    Lee E, Lee SH, Kwon JW, Kim Y, Cho HJ, Yang SI, et al. A rhinitis phenotype associated with increased development of bronchial hyperresponsiveness and asthma in children. Ann Allergy Asthma Immunol. 2016;117:21–8.  https://doi.org/10.1016/j.anai.2016.04.016.CrossRefPubMedGoogle Scholar
  72. 72.
    Ciprandi G, Tosca MA, Capasso M. High exhaled nitric oxide levels may predict bronchial reversibility in allergic children with asthma or rhinitis. J Asthma. 2013;50:33–8.  https://doi.org/10.3109/02770903.2012.740119.CrossRefPubMedGoogle Scholar
  73. 73.
    •• Valverde-Molina J. From rhinitis to asthma: is small airway disfunction the clue? Allergol Immunopathol (Madr). 2018;46:311–2.  https://doi.org/10.1016/j.aller.2018.06.001This is an excellent editorial about the support of small airway disease as the link between allergic rhinitis and asthma.CrossRefGoogle Scholar
  74. 74.
    Bousquet J, Anto J, Auffray C, Akdis M, Cambon-Thomsen A, Keil T, et al. MeDALL (Mechanisms of the Development of ALLergy): an integrated approach from phenotypes to systems medicine. Allergy. 2011;66:596–604.  https://doi.org/10.1111/j.1398-9995.2010.02534.x.CrossRefPubMedGoogle Scholar
  75. 75.
    Andiappan AK, Nilsson D, Halldén C, Yun WD, Säll T, Cardell LO, et al. Investigating highly replicated asthma genes as candidate genes for allergic rhinitis. BMC Med Genet. 2013;14:51.  https://doi.org/10.1186/1471-2350-14-51.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Li J, Zhanga Y, Zhanga L. Discovering susceptibility genes for allergic rhinitis and allergy using a genome-wide association study strategy. Curr Opin Allergy Clin Immunol. 2015;15:33–40.  https://doi.org/10.1097/ACI.0000000000000124.CrossRefPubMedGoogle Scholar
  77. 77.
    Aguilar D, Pinart M, Koppelman GH, Saeys Y, Nawijn MC, Postma DS, et al. Computational analysis of multimorbidity between asthma, eczema and rhinitis. PLoS One. 2017;12:e0179125.  https://doi.org/10.1371/journal.pone.0179125.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Harb H, Renz H. Update on epigenetics in allergic disease. J Allergy Clin Immunol. 2015;135:15–24.  https://doi.org/10.1016/j.jaci.2014.11.009.CrossRefPubMedGoogle Scholar
  79. 79.
    Man WH, de Steenhuijsen Piters WA, Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol. 2017;15:259–70.  https://doi.org/10.1038/nrmicro.2017.14.CrossRefPubMedGoogle Scholar
  80. 80.
    • Ta LDH, Yap GC, Tay CJX, Lim ASM, Huang CH, Chu CW, et al. Establishment of the nasal microbiota in the first 18 months of life: correlation with early-onset rhinitis and wheezing. J Allergy Clin Immunol. 2018;142:86–95.  https://doi.org/10.1016/j.jaci.2018.01.032The results or this article support the hypothesis that the characteristic of nasal microbiota affects development of early-onset rhinitis and wheeze in infants.CrossRefPubMedGoogle Scholar
  81. 81.
    Sozańska B. Microbiome in the primary prevention of allergic diseases and bronchial asthma. Allergol Immunopathol (Madr). 2019;47:79–84.  https://doi.org/10.1016/j.aller.2018.03.005.CrossRefGoogle Scholar
  82. 82.
    Ober C, Sperling AI, von Mutius E, Vercelli D. Immune development and environment: lessons from Amish and Hutterite children. Curr Opin Immunol. 2017;48:51–60.  https://doi.org/10.1016/j.coi.2017.08.003.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Stein MM, Hrusch CL, Gozdz J, Igartua C, Pivniouk V, Murray SE, et al. Innate immunity and asthma risk in amish and hutterite farm children. N Engl J Med. 2016;375:411–21.  https://doi.org/10.1056/NEJMoa1508749.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Tsilochristou OA, Douladiris N, Makris M, Papadopoulos NG. Pediatric allergic rhinitis and asthma: can the march be halted? Paediatr Drugs. 2013;15:431–40.  https://doi.org/10.1007/s40272-013-0043-3.CrossRefPubMedGoogle Scholar
  85. 85.
    •• Morjaria JB, Caruso M, Emma R, Russo C, Polosa R. Treatment of allergic rhinitis as a strategy for preventing asthma. Curr Allergy Asthma Rep. 2018;18:23.  https://doi.org/10.1007/s11882-018-0781-yThe last review about how the treatment of rhinitis, mainly with allergen immunotherapy, may prevent asthma onset.CrossRefPubMedGoogle Scholar
  86. 86.
    Lohia S, Schlosser RJ, Soler ZM. Impact of intranasal corticosteroids on asthma outcomes in allergic rhinitis: a meta-analysis. Allergy. 2013;68:569–79.  https://doi.org/10.1111/all.12124.CrossRefPubMedGoogle Scholar
  87. 87.
    Kessel A. The impact of intranasal corticosteroids on lung function in children with allergic rhinitis. Pediatr Pulmonol. 2014;49:932–7.  https://doi.org/10.1002/ppul.22912.CrossRefPubMedGoogle Scholar
  88. 88.
    Foresi A, Pelucchi A, Gherson G, Mastropasqua B, Chiapparino A, Testi R. Once daily intranasal fluticasone priopionate (200 micrograms) reduces nasal symptoms and inflammation but also attenuates the increase in bronchial responsiveness during the pollen season in allergic rhinitis. J Allergy Clin Immunol. 1996;98:274–82.CrossRefGoogle Scholar
  89. 89.
    Sandrini A, Ferreira IM, Jardim JR, Zamel N, Chapman KR. Effect of nasal triamcinolone acetonide on lower airway inflammatory markers in patients with allergic rhinitis. J Allergy Clin Immunol. 2003;111:313–20.CrossRefGoogle Scholar
  90. 90.
    Brozek JL, Bousquet J, Baena-Cagnani CE, Bonini S, Canonica GW, Casale TB, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines: 2010 revision. J Allergy Clin Immunol. 2010;126:466–76.  https://doi.org/10.1016/j.jaci.2010.06.047.CrossRefPubMedGoogle Scholar
  91. 91.
    Grembiale RD, Camporora Naty S, Tranfa CME, Djukanovic R, Mársico SA. Effect of specific immunotherapy in allergic rhinitic individuals with bronchial hyperresponsiveness. Am J Respir Crit Care Med. 2000;162:2048–52.  https://doi.org/10.1164/ajrccm.162.6.9909087.CrossRefPubMedGoogle Scholar
  92. 92.
    Jacobsen L, Niggemann B, Dreborg S, Ferdousi HA, Halken S, Høst A, et al. Specific immunotherapy has long-term preventive effect of seasonal and perennial asthma: 10-year follow-up on the PAT study. Allergy. 2007;62:943–8.  https://doi.org/10.1111/j.1398-9995.2007.01451.x.CrossRefPubMedGoogle Scholar
  93. 93.
    Novembre E, Galli E, Landi F, Caffarelli C, Pifferi M, De Marco E, et al. Coseasonal sublingual immunotherapy reduces the development of asthma in children with allergic rhinoconjunctivitis. J Allergy Clin Immunol. 2004;114:851–7.  https://doi.org/10.1016/j.jaci.2004.07.012.CrossRefPubMedGoogle Scholar
  94. 94.
    Marogna M, Tomassetti D, Bernasconi A, Colombo F, Massolo A, Businco ADR, et al. Preventive effects of sublingual immunotherapy in childhood: an open randomized controlled study. Ann Allergy Asthma Immunol. 2008;101:206–11.CrossRefGoogle Scholar
  95. 95.
    Valovirta E, Petersen TH, Piotrowska T, Laursen MK, Andersen JS, Sørensen HF, et al. Results from the 5-year SQ grass sublingual immunotherapy tablet asthma prevention (GAP) trial in children with grass pollen allergy. J Allergy Clin Immunol. 2018;141:529–38.e13.  https://doi.org/10.1016/j.jaci.2017.06.014.CrossRefPubMedGoogle Scholar
  96. 96.
    •• Kristiansen M, Dhami S, Netuveli G, Halken S, Muraro A, Roberts G, et al. Allergen immunotherapy for the prevention of allergy: a systematic review and meta-analysis. Pediatr Allergy Immunol. 2017;28:18–29.  https://doi.org/10.1111/pai.12661This is a meta-analysis about the role of allergen immunotherapy for the prevention of allergic diseases.CrossRefPubMedGoogle Scholar
  97. 97.
    Muraro A, Lemanske RF Jr, Hellings PW, Akdis CA, Bieber T, Casale TB, et al. Precision medicine in patients with allergic diseases: airway diseases and atopic dermatitis-PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol. 2016;137:1347–58.  https://doi.org/10.1016/j.jaci.2016.03.010.CrossRefPubMedGoogle Scholar
  98. 98.
    Weinstein SF, Katial R, Jayawardena S, Pirozzi G, Staudinger H, Eckert L, et al. Efficacy and safety of dupilumab in perennial allergic rhinitis and comorbid asthma. J Allergy Clin Immunol. 2018;142:171–7.e1.  https://doi.org/10.1016/j.jaci.2017.11.051.CrossRefPubMedGoogle Scholar
  99. 99.
    • Heffler E, Brussino L, Del Giacco S, Paoletti G, Minciullo PL, Varricchi G, et al. New drugs in early-stage clinical trials for allergic rhinitis. Expert Opin Investig Drugs. 2019;28:267–73.  https://doi.org/10.1080/13543784.2019.1571581Interesting data about the state of the art of novel drugs for therapeutic approach to rhinitis.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Facultad de Ciencias de la Salud, Clínica Universitaria Reina Fabiola, Allergy and Immunology DivisionUniversidad Católica de CórdobaCórdobaArgentina
  2. 2.INICSA-CONICET, Facultad de Ciencias Médicas, Cátedra de Fisiología Humana Facultad de Ciencias MédicasUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations