Current Treatment Options in Allergy

, Volume 5, Issue 4, pp 383–391 | Cite as

Role of TF-Triggered Activation of the Coagulation Cascade in the Pathogenesis of Chronic Spontaneous Urticaria

  • Yuhki Yanase
  • Shunsuke Takahagi
  • Michihiro HideEmail author
Urticaria and Atopic Dermatitis (M Furue and T Nakahara, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Urticaria and Atopic Dermatitis


Purpose of Review

To overview recent understanding of the relationship between the blood coagulation cascade and chronic spontaneous urticaria (CSU).

Recent Findings

The relationship between severities of CSU and the increase of coagulation markers, and the effectiveness of anti-coagulants, such as warfarin, suggest a causative role of the blood coagulation in the pathogenesis of CSU. However, mechanisms of the initiation of blood coagulation, and the link between blood coagulation and wheal formation in urticaria, remained unclear. In blood vessels, vascular endothelial cells and eosinophils may express tissue factor (TF), which triggers the activation of extrinsic coagulation cascade. We recently revealed that histamine and TLR agonists synergistically induce TF expression by endothelial cells and produce active forms of coagulation factors, such as Xa and IIa, which may induce plasma extravasation. The exposure of skin mast cells to the exuded plasma may then induce degranulation of the skin mast cells via various receptors, releasing a massive amount of histamine, resulting in wheal formation observed in CSU.


Further elucidation of the mechanism of blood coagulation and the pathway of mast cell activation by activated coagulation factors may be a target for the development of new and more effective treatments for CSU.


Chronic spontaneous urticaria (CSU) Tissue factor (TF) Extrinsic coagulation cascade eosinophils Endothelial cells Mast cells Eosinophils 



Chronic spontaneous urticarial


Chronic idiopathic urticarial


Tissue factor


Protease-activated receptor


High-affinity IgE receptor


Human umbilical vein endothelial cells


Human dermal microvascular endothelial cells


Toll-like receptor








Substance P


MAS-related G protein-coupled receptor member X2


Neuromedin U


Major basic protein


Eosinophil peroxidase


C-reactive protein


Platelet-activating factor


Funding Information

The study was funded by grants to Y.Y from Takeda Science Foundation 2018 and Grant-in-Aid for Scientific Research (C).

Compliance with Ethical Standards

Conflict of Interest

Yuhki Yanase declares that he has no conflict of interest. Shunsuke Takahagi declares that he has no conflict of interest. Michihiro Hide declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Jain S. Pathogenesis of chronic urticaria: an overview. Dermatol Res Pract. 2014 2014; 674,709.Google Scholar
  2. 2.
    Maurer M, Weller K, Bindslev-Jensen C, Gimenez-Arnau A, Bousquet PJ, Bousquet J, et al. Unmet clinical needs in chronic spontaneous urticaria. A GA2LEN task force report. Allergy. 2011;66(3):317–30.CrossRefGoogle Scholar
  3. 3.
    Maurer M, Church MK, Gonçalo M, Sussman G, Sánchez-Borges M. Management and treatment of chronic urticaria (CU). J Eur Acad Dermatol Venereol. 2015;29:16–32.CrossRefGoogle Scholar
  4. 4.
    Termeer C, Staubach P, Kurzen H, Strömer K, Ostendorf R, Maurer M. Chronic spontaneous urticaria—a management pathway for patients with chronic spontaneous urticaria. J Dtsch Dermatol Ges. 2015;13(5):419–28.PubMedGoogle Scholar
  5. 5.
    Harvima IT, Levi-Schaffer F, Draber P, Friedman S, Polakovicova I, Gibbs BF, et al. Molecular targets on mast cells and basophils for novel therapies. J Allergy Clin Immunol. 2014;134(3):530–44.CrossRefGoogle Scholar
  6. 6.
    Hide M, Hiragun M, Hiragun T. Diagnostic tests for urticaria. Immunol Allergy Clin North Am. 2014;34(1):53–72.CrossRefGoogle Scholar
  7. 7.
    Hide M, Francis DM, Grattan CE, Hakimi J, Kochan JP, Greaves MW. Autoantibodies against the high-affinity IgE receptor as a cause of histamine release in chronic urticaria. N Engl J Med. 1993;328(22):1599–604.CrossRefGoogle Scholar
  8. 8.
    Maurer M, Rosén K, Hsieh HJ, Saini S, Grattan C, Gimenéz-Arnau A, et al. Omalizumab for the treatment of chronic idiopathic or spontaneous urticaria. N Engl J Med. 2013;368(10):924–35.CrossRefGoogle Scholar
  9. 9.
    Hatada Y, Kashiwakura J, Hayama K, Fujisawa D, Sasaki-Sakamoto T, Terui T, et al. Significantly high levels of anti-dsDNA immunoglobulin E in sera and the ability of dsDNA to induce the degranulation of basophils from chronic urticaria patients. Int Arch Allergy Immunol. 2013;161(Suppl 2):154–8.CrossRefGoogle Scholar
  10. 10.
    Schmetzer O, Lakin E, Topal FA, Preusse P, Freier D, Church MK, Maurer M. IL-24 is a common and specific autoantigen of IgE in patients with chronic spontaneous urticaria. J Allergy Clin Immunol. In press. Doi: Scholar
  11. 11.
    Altrichter S, Hawro T, Liedtke M, Holtappels G, Bachert C, Skov PS, et al. In chronic spontaneous urticaria, IgE against staphylococcal enterotoxins is common and functional. Allergy. 2018;73(7):1497–504.CrossRefGoogle Scholar
  12. 12.
    Metz M, Staubach P, Bauer A, Brehler R, Gericke J, Kangas M, et al. Clinical efficacy of omalizumab in chronic spontaneous urticaria is associated with a reduction of FcεRI-positive cells in the skin. Theranostics. 2017;7(5):1266–76.CrossRefGoogle Scholar
  13. 13.
    Larenas-Linnemann DES, Parisi CAS, Ritchie C, Cardona-Villa R, Cherrez-Ojeda I, Cherrez A, et al. Update on omalizumab for urticaria: what’s new in the literature from mechanisms to clinic. Curr Allergy Asthma Rep. 2018;18(5):33.CrossRefGoogle Scholar
  14. 14.
    Wedi B, Raap U, Kapp A. Chronic urticaria and infections. Curr Opin Allergy Clin Immunol. 2004;4(5):387–96.CrossRefGoogle Scholar
  15. 15.
    Atwa MA, Emara AS, Youssef N, Bayoumy NM. Serum concentration of IL-17, IL-23 and TNF-α among patients with chronic spontaneous urticaria: association with disease activity and autologous serum skin test. J Eur Acad Dermatol Venereol. 2014;28(4):469–74.CrossRefGoogle Scholar
  16. 16.
    Kasperska-Zajac A, Sztylc J, Machura E, Jop G. Plasma IL-6 concentration correlates with clinical disease activity and serum C-reactive protein concentration in chronic urticaria patients. Clin Exp Allergy. 2011;41(10):1386–91.CrossRefGoogle Scholar
  17. 17.
    •• Kolkhir P, André F, Church MK, Maurer M, Metz M. Potential blood biomarkers in chronic spontaneous urticaria. Clin Exp Allergy. 2017;47(1):19–36 This is a review of various biomarkers involved in the pathogenesis of CSU.CrossRefGoogle Scholar
  18. 18.
    Metz M, Krull C, Hawro T, Saluja R, Groffik A, Stanger C, et al. Substance P is upregulated in the serum of patients with chronic spontaneous urticaria. J Invest Dermatol. 2014;134(11):2833–6.CrossRefGoogle Scholar
  19. 19.
    Kolkhir P, Altrichter S, Hawro T, Maurer M. C-reactive protein is linked to disease activity, impact, and response to treatment in patients with chronic spontaneous urticaria. Allergy. 2018;73(4):940–8.CrossRefGoogle Scholar
  20. 20.
    Lin W, Zhou Q, Liu C, Ying M, Xu S. Increased plasma IL-17, IL-31, and IL-33 levels in chronic spontaneous urticaria. Sci Rep. 2017;7(1):17797.CrossRefGoogle Scholar
  21. 21.
    Rather S, Keen A, Sajad P. Serum levels of 25-hydroxyvitamin D in chronic urticaria and its association with disease activity: a case control study. Indian Dermatol Online J. 2018;9(3):170–4.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Chen T, Fu LX, Sun QM, Zhou PM, Guo ZP. Decreased interleukin-35 serum levels in patients with chronic spontaneous urticaria. Ann Allergy Asthma Immunol. 2018: S1081–1206(18)30462–9.Google Scholar
  23. 23.
    Asero R. Plasma D-dimer levels and clinical response to ciclosporin in severe chronic spontaneous urticaria. J Allergy Clin Immunol. 2015;135(5):1401–3.CrossRefGoogle Scholar
  24. 24.
    Cugno M, Marzano AV, Asero R, Tedeschi A. Activation of blood coagulation in chronic urticaria: pathophysiological and clinical implications. Intern Emerg Med. 2010;5(2):97–101.CrossRefGoogle Scholar
  25. 25.
    Asero R, Tedeschi A, Coppola R, Griffini S, Paparella P, Riboldi P, et al. Activation of the tissue factor pathway of blood coagulation in patients with chronic urticaria. J Allergy Clin Immunol. 2007;119(3):705–10.CrossRefGoogle Scholar
  26. 26.
    Sakurai Y, Morioke S, Takeda T, Takahagi S, Hide M, Shima M. Increased thrombin generation potential in patients with chronic spontaneous urticaria. Allergol Int. 2015;64(1):96–8.CrossRefGoogle Scholar
  27. 27.
    Takeda T, Sakurai Y, Takahagi S, Kato J, Yoshida K, Yoshioka A, et al. Increase of coagulation potential in chronic spontaneous urticaria. Allergy. 2011;66(3):428–33.CrossRefGoogle Scholar
  28. 28.
    Takahagi S, Shindo H, Watanabe M, Kameyoshi Y, Hide M. Refractory chronic urticaria treated effectively with the protease inhibitors, nafamostat mesilate and camostat mesilate. Acta Derm Venereol. 2010;90(4):425–6.CrossRefGoogle Scholar
  29. 29.
    Yanase Y, Takahagi S, Hide M. Chronic spontaneous urticaria and the extrinsic coagulation system. Allergol Int. 2018;67(2):191–4.CrossRefGoogle Scholar
  30. 30.
    Meyer-De Schmid JJ, Neuman A. Treatment of chronic urticaria with heparin. Bull Soc Fr Dermatol Syphiligr. 1952;59(3):286–7.PubMedGoogle Scholar
  31. 31.
    Chua SL, Gibbs S. Chronic urticaria responding to subcutaneous heparin sodium. Br J Dermatol. 2005;153(1):216–7.CrossRefGoogle Scholar
  32. 32.
    Parslew R, Pryce D, Ashworth J, Friedmann PS. Warfarin treatment of chronic idiopathic urticaria and angio-oedema. Clin Exp Allergy. 2000;30(8):1161–5.CrossRefGoogle Scholar
  33. 33.
    Takahagi S, Mihara S, Iwamoto K, Morioke S, Okabe T, Kameyoshi Y, et al. Coagulation/fibrinolysis and inflammation markers are associated with disease activity in patients with chronic urticaria. Allergy. 2010;65(5):649–56.CrossRefGoogle Scholar
  34. 34.
    Mackman N. The many faces of tissue factor. J Thromb Haemost. 2009;7(Suppl 1):136–9.CrossRefGoogle Scholar
  35. 35.
    Daubie V, Pochet R, Houard S, Philippart P. Tissue factor: a mini-review. J Tissue Eng Regen Med. 2007;1(3):161–9.CrossRefGoogle Scholar
  36. 36.
    Chu AJ. Tissue factor mediates inflammation. Arch Biochem Biophys. 2005;440(2):123–32.CrossRefGoogle Scholar
  37. 37.
    Chu AJ. Tissue factor, blood coagulation, and beyond: an overview. Int J Inflam. 2011;2011:367284.CrossRefGoogle Scholar
  38. 38.
    Moosbauer C, Morgenstern E, Cuvelier SL, Manukyan D, Bidzhekov K, Albrecht S, et al. Eosinophils are a major intravascular location for tissue factor storage and exposure. Blood. 2007;109(3):995–1002.CrossRefGoogle Scholar
  39. 39.
    Cugno M, Marzano AV, Tedeschi A, Fanoni D, Venegoni L, Asero R. Expression of tissue factor by eosinophils in patients with chronic urticaria. Int Arch Allergy Immunol. 2009;148(2):170–4.CrossRefGoogle Scholar
  40. 40.
    Puccetti A, Bason C, Simeoni S, Millo E, Tinazzi E, Beri R, et al. In chronic idiopathic urticaria autoantibodies against Fc epsilonRII/CD23 induce histamine release via eosinophil activation. Clin Exp Allergy. 2005;35(12):1599–607.CrossRefGoogle Scholar
  41. 41.
    Subramanian H, Gupta K, Ali H. Roles of Mas-related G protein-coupled receptor X2 on mast cell-mediated host defense, pseudoallergic drug reactions, and chronic inflammatory diseases. J Allergy Clin Immunol. 2016;138(3):700–10.CrossRefGoogle Scholar
  42. 42.
    Grover SP, Mackman N. Tissue factor: an essential mediator of hemostasis and trigger of thrombosis. Arterioscler Thromb Vasc Biol. 2018;38(4):709–25.CrossRefGoogle Scholar
  43. 43.
    Østerud B. Tissue factor expression in blood cells. Thromb Res. 2010;125(Suppl 1):S31–4.CrossRefGoogle Scholar
  44. 44.
    Siddiqui FA, Desai H, Amirkhosravi A, Amaya M, Francis JL. The presence and release of tissue factor from human platelets. Platelets. 2002;13(4):247–53.CrossRefGoogle Scholar
  45. 45.
    •• Yanase Y, Morioke S, Iwamoto K, Takahagi S, Uchida K, Kawaguchi T, et al. Histamine and TLR ligands synergistically induce endothelial-cell gap-formation by the extrinsic coagulating pathway. J Allergy Clin Immunol. 2018;141(3):1115–8 This study reported synergistic expression of TF on the surface of vascular endothelial cells in response to histamine and LPS.CrossRefGoogle Scholar
  46. 46.
    Vonakis BM, Saini SS. New concepts in chronic urticaria. Curr Opin Immunol. 2008;20(6):709–16.CrossRefGoogle Scholar
  47. 47.
    Zhan M, Zheng W, Jiang Q, Zhao Z, Wang Z, Wang J, et al. Upregulated expression of substance P (SP) and NK1R in eczema and SP-induced mast cell accumulation. Cell Biol Toxicol. 2017;33(4):389–405.CrossRefGoogle Scholar
  48. 48.
    Steffel J, Akhmedov A, Greutert H, Lüscher TF, Tanner FC. Histamine induces tissue factor expression: implications for acute coronary syndromes. Circulation. 2005;112:341–9.CrossRefGoogle Scholar
  49. 49.
    Zucker S, Mirza H, Conner CE, Lorenz AF, Drews MH, Bahou WF, et al. Vascular endothelial growth factor induces tissue factor and matrix metalloproteinase production in endothelial cells: conversion of prothrombin to thrombin results in progelatinase A activation and cell proliferation. Int J Cancer. 1998;75(5):780–6.CrossRefGoogle Scholar
  50. 50.
    Del Turco S, Basta G, Lazzerini G, Chancharme L, Lerond L, De Caterina R. Involvement of the TP receptor in TNF-α-induced endothelial tissue factor expression. Vascul Pharmacol. 2014;62(2):49–56.CrossRefGoogle Scholar
  51. 51.
    Stojkovic S, Kaun C, Basilio J, Rauscher S, Hell L, Krychtiuk KA, et al. Tissue factor is induced by interleukin-33 in human endothelial cells: a new link between coagulation and inflammation. Sci Rep. 2016;6:25171.CrossRefGoogle Scholar
  52. 52.
    Scholl A, Ivanov I, Hinz B. Inhibition of interleukin-1β-induced endothelial tissue factor expression by the synthetic cannabinoid WIN 55,212-2. Oncotarget. 2016;7(38):61438–61,457.CrossRefGoogle Scholar
  53. 53.
    Lwaleed BA, Bass PS. Tissue factor pathway inhibitor: structure, biology and involvement in disease. J Pathol. 2006;208(3):327–39.CrossRefGoogle Scholar
  54. 54.
    Fujisawa D, Kashiwakura J, Kita H, Kikukawa Y, Fujitani Y, Sasaki-Sakamoto T, et al. Expression of Mas-related gene X2 on mast cells is upregulated in the skin of patients with severe chronic urticaria. J Allergy Clin Immunol. 2014;134(3):622–33.CrossRefGoogle Scholar
  55. 55.
    • Matsuo Y, Yanase Y, Irifuku R, Takahagi S, Mihara S, Ishii K, Kawaguchi T, Tanaka A, Iwamoto K, Watanuki H, Furuta K, Tanaka S, Inoue A, Aoki J, Hide M. Neuromedin U directly induces degranulation of skin mast cells, presumably via MRGPRX2. Allergy. In press. This study reported the role of NMU, neuropeptide, for the activation of human skin mast cells.
  56. 56.
    Bossi F, Frossi B, Radillo O, Cugno M, Tedeschi A, Riboldi P, et al. Mast cells are critically involved in serum-mediated vascular leakage in chronic urticaria beyond high-affinity IgE receptor stimulation. Allergy. 2011;66(12):1538–45.CrossRefGoogle Scholar
  57. 57.
    Cugno M, Tedeschi A, Frossi B, Bossi F, Marzano AV, Asero R. Detection of low-molecular-weight mast cell-activating factors in serum from patients with chronic spontaneous urticaria. J Investig Allergol Clin Immunol. 2016;26(5):310–3.CrossRefGoogle Scholar
  58. 58.
    He SH, Xie H, Fu YL. Activation of human tonsil and skin mast cells by agonists of proteinase activated receptor-2. Acta Pharmacol Sin. 2005;26(5):568–74.CrossRefGoogle Scholar
  59. 59.
    Moormann C, Artuc M, Pohl E, Varga G, Buddenkotte J, Vergnolle N, et al. Functional characterization and expression analysis of the proteinase-activated receptor-2 in human cutaneous mast cells. J Invest Dermatol. 2006;126(4):746–55.CrossRefGoogle Scholar
  60. 60.
    Carvalho RF, Nilsson G, Harvima IT. Increased mast cell expression of PAR-2 in skin inflammatory diseases and release of IL-8 upon PAR-2 activation. Exp Dermato.l. 2010;19(2):117–22.CrossRefGoogle Scholar
  61. 61.
    Vliagoftis H. Thrombin induces mast cell adhesion to fibronectin: evidence for involvement of protease-activated receptor-1. J Immunol. 2002;169(8):4551–8.CrossRefGoogle Scholar
  62. 62.
    Asero R, Riboldi P, Tedeschi A, Cugno M, Meroni P. Chronic urticaria: a disease at a crossroad between autoimmunity and coagulation. Autoimmun Rev. 2007;7(1):71–6.CrossRefGoogle Scholar
  63. 63.
    Huber-Lang M, Sarma JV, Zetoune FS, Rittirsch D, Neff TA, McGuire SR, et al. Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med. 2006;12(6):682–7.CrossRefGoogle Scholar
  64. 64.
    Ali H. Regulation of human mast cell and basophil function by anaphylatoxins C3a and C5a. Immunol Lett. 2010;128(1):36–45.CrossRefGoogle Scholar
  65. 65.
    Razin E, Marx G. Thrombin-induced degranulation of cultured bone marrow-derived mast cells. J Immunol. 1984;133(6):3282–5.PubMedGoogle Scholar
  66. 66.
    • Matsuo Y, Yanase Y, Irifuku R, Ishii K, Kawaguchi T, Takahagi S, Hide I, Hide M. The role of adenosine for IgE receptor-dependent degranulation of human peripheral basophils and skin mast cells. Allergol Int. In press. This study reported the suppressive effect of adenosine on IgE receptor-dependent activation of human skin mast cells and basophils.CrossRefGoogle Scholar
  67. 67.
    Grattan CE and Marsland AM: Chapter 42 Urticaria. In; Griffiths C, Barker J, Bleiker T, Chalmers R, Creamer D. Edotors. Rook’s textbook of dermatology. John Wiley & Sons, Ltd., West Sussex, UK; 2016.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yuhki Yanase
    • 1
  • Shunsuke Takahagi
    • 1
  • Michihiro Hide
    • 1
    Email author
  1. 1.Department of Dermatology, Institute of Biomedical & Health SciencesHiroshima UniversityHiroshimaJapan

Personalised recommendations