Advertisement

Nutrition, osteoarthritis and cartilage metabolism

  • Osvaldo Daniel Messina
  • Maritza Vidal WilmanEmail author
  • Luis F. Vidal Neira
Review

Abstract

Background

Osteoarthritis (OA) is a degenerative joint disease and a leading cause of adult disability. There is no cure for OA and there is no effective treatment to stop its progression. Current pharmacologic treatments such as analgesics and non-steroidal anti-inflammatory drugs may improve the pain and offer some relief but they do not affect the progression of the disease. The chronic intake of these drugs may result in severe adverse events. The aim of this review is to revise the effects of nutrition on cartilage metabolism and OA progression.

Methods

A systematic literature search was performed including those related to macro- and micro-nutrients’ actions on cartilage and OA outcome. We selected peer-reviewed articles reporting the results of human clinical trials.

Results

Glucosamine and chondroitin sulfate have shown to delay OA knee progression in several clinical trials. The effectiveness of some products considered nutraceuticals has been widely reviewed in the literature. This article presents a general description of the effectiveness and mechanism of action of nutrients, vitamins, antioxidants and other natural components considered as part of the normal diet. Many in vitro studies indicate the efficacy of specific nutrients in cartilage metabolism and its involvement in OA. However, rigorous clinical studies needed to evaluate the efficacy of these compounds in humans are still missing. The influence of nutrients and diet on the metabolism of cartilage and OA could represent a long-term coadjuvant alternative in the management of patients with OA. Effects of diet modifications on lipid and cholesterol profiles, adequate vitamin levels and weight reduction in obese patients could influence the course of the disease.

Conclusion

This review demonstrates that nutrition can improve the symptoms of OA. Glucosamine and chondroitin sulfate have shown robustly to delay the progression of knee OA in several well-designed studies, however more controlled clinical trials are needed to conclude that nutritional changes slow down the progression of the disease.

Keywords

Osteoarthritis Cartilage Nutrition Cartilage metabolism 

Notes

Compliance with ethical standards

Conflict of interest

Author Osvaldo Daniel Messina has received honoraria for speaking from Pfizer, Eli Lilly and American Health Foundation. Author Maritza Vidal Wilman has received financial support for attending symposia from PeruLab. Author Luis F Vidal Neira has received honoraria for speaking from Expanscience, Menarini, MSD, PeruLab, Sanofi, Eli Lilly and American Health Foundation.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

None.

References

  1. 1.
    Wang B, Zhou X, Price C et al (2013) Quantifying load-induced solute transport and solute-matrix interaction within the osteocyte lacunar-canalicular system. J Bone Miner Res 28:1075–1086CrossRefGoogle Scholar
  2. 2.
    Madry H, Niek van Dijk C, Mueller-Gerbl M (2010) The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc 18:419–433CrossRefGoogle Scholar
  3. 3.
    Maiese K (2016) Picking a bone with WISP1 (CCN4): new strategies against degenerative joint disease. J Transl Sci 1:83–85CrossRefGoogle Scholar
  4. 4.
    Leong D, Choudhury M, Hirsh D et al (2013) Nutraceuticals: potential for chondroprotection and molecular targeting of osteoarthritis. Int J Mol Sci 14:23063–23085CrossRefGoogle Scholar
  5. 5.
    Bruyère O, Cooper C, Al-Daghri NM et al (2018) Inappropriate claims from non-equivalent medications in osteoarthritis: a position paper endorsed by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Aging Clin Exp Res 30:111–117CrossRefGoogle Scholar
  6. 6.
    Akhtar N, Haqqi TM (2012) Current nutraceuticals in the management of osteoarthritis: a review. Ther Adv Musculoskelet Dis 4:181–207CrossRefGoogle Scholar
  7. 7.
    Reginster JY, Deroisy R, Rovati LC et al (2001) Long-term effects of glucosamine sulphate on osteoarthritis progression: a randomised, placebo-controlled clinical trial. Lancet 357:251–256CrossRefGoogle Scholar
  8. 8.
    Pavelká K, Gatterová J, Olejarová M et al (2002) Glucosamine sulfate use and delay of progression of knee osteoarthritis: a 3-year, randomized, placebo-controlled, double-blind study. Arch Intern Med 162:2113–2123CrossRefGoogle Scholar
  9. 9.
    Kahan A, Uebelhart D, De Vathaire F et al (2009) Long-term effects of chondroitins 4 and 6 sulfate on knee osteoarthritis: the study on osteoarthritis progression prevention, a two-year, randomized, double-blind, placebo-controlled trial. Arthritis Rheum 60:524–533CrossRefGoogle Scholar
  10. 10.
    Maheu E, Cadet C, Marty M et al (2014) Randomised, controlled trial of avocado–soybean unsaponifiable (piascledine) effect on structure modification in hip osteoarthritis: the ERADIAS study. Ann Rheum Dis 73:376–384CrossRefGoogle Scholar
  11. 11.
    Cutolo M, Berenbaum F, Hochberg M et al (2015) Commentary on recent therapeutic guidelines for osteoarthritis. Semin Arthritis Rheum 44:611–617CrossRefGoogle Scholar
  12. 12.
    McAlindon TE, Jacques P, Zhang Y et al (1996) Do antioxidant micronutrients protect against the development and progression of knee osteoarthritis? Arthritis Rheumatol 39:648–656CrossRefGoogle Scholar
  13. 13.
    McAlindon T, Felson D (1997) Nutrition: risk factors for osteoarthritis. Ann Rheum Dis 56:397–402CrossRefGoogle Scholar
  14. 14.
    Kakuo S, Fushimi T, Kawasaki K et al (2018) Effects of Psidium guajava Linn. leaf extract in Japanese subjects with knee pain: a randomized, double-blind, placebo-controlled, parallel pilot study. Aging Clin Exp Res 30:1391–1398CrossRefGoogle Scholar
  15. 15.
    Coulson S, Butt H, Vecchio P (2013) Green-lipped mussel extract (Perna canaliculus) and glucosamine sulphate in patients with knee osteoarthritis: therapeutic efficacy and effects on gastrointestinal microbiota profiles. Inflammopharmacology 21:79–90CrossRefGoogle Scholar
  16. 16.
    Hodge JA, McKibbin B (1969) The nutrition of mature and immature cartilage in rabbits: an autoradiographic study. J Bone Jt Surg Br 51:140–147Google Scholar
  17. 17.
    Clark JM (1990) The structure of vascular channels in the subchondral plate. J Anat 171:105–115Google Scholar
  18. 18.
    Malinin T, Ouellette EA (2000) Articular cartilage nutrition is mediated by subchondral bone: a long-term autograft study in baboons. Osteoarthr Cartil 8:483–491CrossRefGoogle Scholar
  19. 19.
    Imhof H, Breitenseher M, Kainberger F et al (1999) Importance of subchondral bone to articular cartilage in health and disease. Top Magn Reson Imaging 10:180–192CrossRefGoogle Scholar
  20. 20.
    Arkill KP, Winlove CP (2008) Solute transport in the deep and calcified zones of articular cartilage. Osteoarthr Cartil 16:708–714CrossRefGoogle Scholar
  21. 21.
    Oláh T, Mandry H (2018) The osteochondral unit: the importance of the underlying subchondral bone. In: Farr J, Gomoll AH (eds) Cartilage restoration. Practical clinical applications, 2nd edn. Spriger International Publishing, Amsterdam, pp 13–22CrossRefGoogle Scholar
  22. 22.
    Attur M, Dave M, Abramson SB et al (2012) Activation of diverse eicosanoid pathways in osteoarthritic cartilage: a lipidomic and genomic analysis. Bull NYU Hosp Jt Dis 70:99Google Scholar
  23. 23.
    Villalvilla A, Gómez R, Largo R et al (2013) Lipid transport and metabolism in healthy and osteoarthritic cartilage. Int J Mol Sci 14:20793–20808CrossRefGoogle Scholar
  24. 24.
    Li Y, Xiao W, Luo W et al (2016) Alterations of amino acid metabolism in osteoarthritis: its implications for nutrition and health. Amino Acids 48:907–914CrossRefGoogle Scholar
  25. 25.
    Chen R, Han S, Liu X et al (2018) Perturbations in amino acids and metabolic pathways in osteoarthritis patients determined by targeted metabolomics analysis. J Chromatogr B 1085:54–62CrossRefGoogle Scholar
  26. 26.
    Lamers RJAN, Van Nesselrooij JHJ, Kraus VB et al (2005) Identification of an urinary metabolite profile associated with osteoarthritis. Osteoarthr Cartil 13:762–768CrossRefGoogle Scholar
  27. 27.
    Sekar S, Crawford R, Xiao Y et al (2017) Dietary fats and osteoarthritis: insights, evidences, and new horizons. J Cell Biochem 118:453–463CrossRefGoogle Scholar
  28. 28.
    Lippiello L, Fienhold M, Grandjean C (1990) Metabolic and ultrastructural changes in articular cartilage of rats fed dietary supplements of omega-3 fatty acids. Arthritis Rheum 33:1029–1036CrossRefGoogle Scholar
  29. 29.
    Lopez HL (2012) Nutritional interventions to prevent and treat osteoarthritis. Part I: focus on fatty acids and macronutrients. PM&R 4:S145–S154CrossRefGoogle Scholar
  30. 30.
    Bastiaansen-Jenniskens YM, Siawash M, van de Lest CHA et al (2013) Monounsaturated and saturated, but not n-6 polyunsaturated fatty acids decrease cartilage destruction under inflammatory conditions: a preliminary study. Cartilage 4:321–328CrossRefGoogle Scholar
  31. 31.
    Wang Y, Wluka AE, Hodge AM et al (2008) Effect of fatty acids on bone marrow lesions and knee cartilage in healthy, middle-aged subjects without clinical knee osteoarthritis. Osteoarthr Cartil 16:579–583CrossRefGoogle Scholar
  32. 32.
    Davies-Tuck ML, Hanna F, Davis SR et al (2009) Total cholesterol and triglycerides are associated with the development of new bone marrow lesions in asymptomatic middle-aged women—a prospective cohort study. Arthritis Res Ther 11:R181CrossRefGoogle Scholar
  33. 33.
    Doré D, de Hoog J, Giles G et al (2012) A longitudinal study of the association between dietary factors, serum lipids, and bone marrow lesions of the knee. Arthritis Res Ther 14:R13CrossRefGoogle Scholar
  34. 34.
    Ravalli S, Szychlinska MA, Leonardi RM et al (2018) Recently highlighted nutraceuticals for preventive management of osteoarthritis. World J Ortop 9:255CrossRefGoogle Scholar
  35. 35.
    Veronese N, Stubbs B, Noale M et al (2017) Adherence to a Mediterranean diet is associated with lower prevalence of osteoarthritis: data from the osteoarthritis initiative. Clin Nutr 36:1609–1614CrossRefGoogle Scholar
  36. 36.
    Veronese N, Shivappa N, Stubb B, Smith T, Hébert JR, Cooper C et al (2017) The relationship between the dietary inflammatory index and prevalence of radiographic symptomatic osteoarthritis: data from the osteoarthritis initiative. Eur J Nutrition.  https://doi.org/10.1007/s00394-017-1589-6 Google Scholar
  37. 37.
    Veronese N, Koyanagi A, Stubbs B et al (2018) Mediterranean diet and knee osteoarthritis outcomes: a longitudinal cohort study. Clin Nutr.  https://doi.org/10.1016/j.clnu.2018.11.032 Google Scholar
  38. 38.
    Brien S, Lewith G, Walker A (2004) Bromelain as a treatment for osteoarthritis: a review of clinical studies. Evid Based Compl Alt 1:251–257CrossRefGoogle Scholar
  39. 39.
    Cruz-Almeida Y, Sibille KT, Goodin BR et al (2014) Racial and ethnic differences in older adults with knee osteoarthritis. Arthritis Rheumatol 66:1800–1810CrossRefGoogle Scholar
  40. 40.
    Glover TL, Goodin BR, Horgas AL et al (2012) Vitamin D, race, and experimental pain sensitivity in older adults with knee osteoarthritis. Arthritis Rheumatol 64:3926–3935CrossRefGoogle Scholar
  41. 41.
    Collins JE, Deshpand BR, Katz JN et al (2016) Race-and sex-specific incidence rates and predictors of total knee arthroplasty: seven-year data from the osteoarthritis initiative. Arthritis Care Res 68:965–973CrossRefGoogle Scholar
  42. 42.
    Peregoy J, Wilder FV (2011) The effects of vitamin C supplementation on incident and progressive knee osteoarthritis: a longitudinal study. Public Health Nutr 14:709–715CrossRefGoogle Scholar
  43. 43.
    Chaganti RK, Tolstykh I, Javaid MK et al (2014) High plasma levels of vitamin C and E are associated with incident radiographic knee osteoarthritis. Osteoarthr Cartil 22:190–196CrossRefGoogle Scholar
  44. 44.
    Jordan JM, De Roos AJ, Renner JB et al (2004) A case-control study of serum tocopherol levels and the alpha- to- gamma-tocopherol ratio in radiographic knee osteoarthritis: the Johnston County Osteoarthritis Project. Am J Epidemiol 159:968–977CrossRefGoogle Scholar
  45. 45.
    Wluka AE, Stuckey S, Brand C et al (2002) Supplementary vitamin E does not affect the loss of cartilage volume in knee osteoarthritis: a 2 year double blind randomized placebo controlled study. J Rheumatol 29:2585–2591Google Scholar
  46. 46.
    Seki T, Hasegawa Y, Yamaguchi J et al (2010) Association of serum carotenoids, retinol, and tocopherols with radiographic knee osteoarthritis: possible risk factors in rural Japanese inhabitants. J Orthop Sci 15:477–484CrossRefGoogle Scholar
  47. 47.
    Chin KY, Chin KY, Ima-Nirwana S (2018) The role of vitamin E in preventing and treating osteoarthritis—a review of the current evidence. Front Pharmacol 9:946CrossRefGoogle Scholar
  48. 48.
    Thomas S, Browne H, Mobasheri A et al (2018) What is the evidence for a role for diet and nutrition in osteoarthritis? Rheumatology 57:iv61–iv74CrossRefGoogle Scholar
  49. 49.
    Neogi T, Booth SL, Zhang YQ et al (2006) Low vitamin K status is associated with osteoarthritis in the hand and knee. Arthritis Rheum 54:125561Google Scholar
  50. 50.
    Oka H, Akune T, Muraki S et al (2009) Association of low dietary vitamin K intake with radiographic knee osteoarthritis in the Japanese elderly population: dietary survey in a population-based cohort of the ROAD study. J Orthop Sci 14:687–692CrossRefGoogle Scholar
  51. 51.
    Misra D, Booth SL, Tolstykh I et al (2013) Vitamin K deficiency is associated with incident knee osteoarthritis. Am J Med 126:243–248CrossRefGoogle Scholar
  52. 52.
    Shea MK, Kritchevsky SB, Hsu FC et al (2015) The association between vitamin K status and knee osteoarthritis features in older adults: the health, aging and body composition study. Osteoarthr Cartil 23:370–378CrossRefGoogle Scholar
  53. 53.
    Neogi T, Felson DT, Sarno R et al (2008) Vitamin K and hand osteoarthritis: results from a randomised controlled trial. Ann Rheum Dis 67:1570–1573CrossRefGoogle Scholar
  54. 54.
    Shea MK, Loeser RF, Hsu FC et al (2016) Vitamin K status and lower extremity function in older adults: the health aging and body composition study. J Gerontol A Biol Sci Med Sci 71:1348–1355CrossRefGoogle Scholar
  55. 55.
    Heidari B, Heidari P, Hajian-Tilaki K (2011) Association between serum vitamin D deficiency and knee osteoarthritis. Int Orthop 35:1627–1631CrossRefGoogle Scholar
  56. 56.
    Chaganti RK, Parimi N, Cawthon P et al (2010) Association of 25-hydroxyvitamin D with prevalent osteoarthritis of the hip in elderly men: the osteoporotic fractures in men study. Arthritis Rheumatol 62:511–514CrossRefGoogle Scholar
  57. 57.
    Bergink AP, Uitterlinden AG, Van Leeuwen JP et al (2009) Vitamin D status, bone mineral density, and the development of radiographic osteoarthritis of the knee: the Rotterdam Study. J Clin Rheumatol 15:230–237CrossRefGoogle Scholar
  58. 58.
    Felson DT, Niu J, Clancy M et al (2007) Low levels of vitamin D and worsening of knee osteoarthritis: results of two longitudinal studies. Arthritis Rheumatol 56:129–136CrossRefGoogle Scholar
  59. 59.
    Zhang FF, Driban JB, Lo GH et al (2014) Vitamin D deficiency is associated with progression of knee osteoarthritis. J Nutr 144:2002–2008CrossRefGoogle Scholar
  60. 60.
    McAlindon T, LaValley M, Schneider E et al (2013) Effect of vitamin D supplementation on progression of knee pain and cartilage volume loss in patients with symptomatic osteoarthritis: a randomized controlled trial. JAMA 309:155–162CrossRefGoogle Scholar
  61. 61.
    Jin X, Jones G, Cicuttini F et al (2016) Effect of vitamin D supplementation on tibial cartilage volume and knee pain among patients with symptomatic knee osteoarthritis: a randomized clinical trial. JAMA 315:1005–1013CrossRefGoogle Scholar
  62. 62.
    Sanghi D, Mishra A, Sharma AC et al (2013) Does vitamin D improve osteoarthritis of the knee: a randomized controlled pilot trial. Clin Orthop Rel Res 471:3556–3562CrossRefGoogle Scholar
  63. 63.
    Zheng S, Jin X, Cicuttini F et al (2017) Maintaining vitamin D sufficiency is associated with improved structural and symptomatic outcomes in knee osteoarthritis. Am J Med 130:1211–1218CrossRefGoogle Scholar
  64. 64.
    Fincham JE, Hough FS, Taljaard JJ et al (1986) Mseleni joint disease. Part II. Low serum calcium and magnesium levels in women. S Afr Med J 70:740–742Google Scholar
  65. 65.
    Hunter DJ, Hart D, Snieder H et al (2003) Evidence of altered bone turnover, vitamin D and calcium regulation with knee osteoarthritis in female twins. Rheumatology 42:1311–1316CrossRefGoogle Scholar
  66. 66.
    Zhang Y, Xu J, Qin L et al (2016) Magnesium and osteoarthritis: from a new perspective. Ann Joint.  https://doi.org/10.21037/aoj.2016.11.04 Google Scholar
  67. 67.
    Weglicki WB, Phillips TM (1992) Pathobiology of magnesium deficiency: a cytokine/neurogenic inflammation hypothesis. Am J Physiol 263:R734–R737Google Scholar
  68. 68.
    Song Y, Manson JE, Cook NR et al (2005) Dietary magnesium intake and risk of cardiovascular disease among women. Am J Cardiol 96:1135–1141CrossRefGoogle Scholar
  69. 69.
    Zeng C, Li H, Wei J et al (2015) Association between dietary magnesium intake and radiographic knee osteoarthritis. PLoS One 10:e0127666CrossRefGoogle Scholar
  70. 70.
    Qin B, Shi X, Samai PS et al (2012) Association of dietary magnesium intake with radiographic knee osteoarthritis: results from a population-based study. Arthritis Care Res 64:1306–1311CrossRefGoogle Scholar
  71. 71.
    Shmagel A, Onizuka N, Langsetmo L et al (2018) Low magnesium intake is associated with increased knee pain in subjects with radiographic knee osteoarthritis: data from the osteoarthritis initiative. Osteoarthr Cartil 26:651–658CrossRefGoogle Scholar
  72. 72.
    Downey CM, Horton CR, Carlson BA et al (2009) Osteo-chondroprogenitor-specific deletion of the selenocysteine tRNA gene, Trsp, leads to chondronecrosis and abnormal skeletal development: a putative model for Kashin-Beck disease. PLoS Genet 5:e1000616CrossRefGoogle Scholar
  73. 73.
    Li S, Xiao T, Zheng B (2012) Medical geology of arsenic, selenium and thallium in China. Sci Total Environ 421:31–40CrossRefGoogle Scholar
  74. 74.
    Zou K, Liu G, Wu T et al (2009) Selenium for preventing Kashin-Beck osteoarthropathy in children: a meta-analysis. Osteoarthr Cartil 17:144–151CrossRefGoogle Scholar
  75. 75.
    Xie D, Liao Y, Yue J et al (2018) Effects of five types of selenium supplementation for treatment of Kashin-Beck disease in children: a systematic review and network meta-analysis. BMJ Open 8:e017883CrossRefGoogle Scholar
  76. 76.
    Kim JH, Jeon J, Shin M et al (2014) Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell 156:730–743CrossRefGoogle Scholar
  77. 77.
    Vinatier C, Merceron C, Guicheux J (2016) Osteoarthritis: from pathogenic mechanisms and recent clinical developments to novel prospective therapeutic options. Drug Discov Today 21:1932–1937CrossRefGoogle Scholar
  78. 78.
    Radakovich LB, Marolf AJ, Santangelo KS (2017) ‘Iron accumulation’ gene expression profile in obese Hartley guinea pig knee joints is associated with more severe osteoarthritis. Osteoarthr Cartil 25:S169CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Rheumatology IRO Medical Center and Hospital C Argerich, Member of the Board of GovernanceInternational Osteoporosis Foundation (IOF)Buenos AiresArgentina
  2. 2.Centro de Diagnóstico de Osteoporosis y Enfermedades Reumáticas (CEDOR)LimaPeru
  3. 3.Member of International Osteoporosis Foundation, Latin America (IOF–LATAM)LimaPeru

Personalised recommendations