Factors associated with impairment in gait speed in older people with clinically normal gait. A cross-sectional study

  • M. A. Caballero-MoraEmail author
  • L. Rodríguez Mañas
  • M. Valdés-Aragonés
  • I. García-Sánchez
  • C. Alonso-Bouzon
  • M. Castro Rodríguez
  • L. Nuñez-Jimenez
  • A. Esteban
  • A. Rodriguez-LasoEmail author
Original Article



Health professionals commonly use gait speed in the evaluation of functional status in older people. However, only a limited number of studies have assessed gait speed in the absence of disorders of gait, using confounding factors and exclusion criteria coming from studies conducted in younger people. Our study aims to analyse which factors are associated with gait speed in older people with normal clinical gait.


An observational cross-sectional study was conducted in 119 community-dwelling residents without relevant comorbidities (Charlson index < 2), preserved function (Barthel > 85) and normal gait by visual exploration. Exclusion criteria included suffering from any illness that could modify the characteristics of gait, terminal status or the presence of an acute medical illness in the past 3 months. We used a stepwise linear regression of several variables (sociodemographic characteristics, cognition, body composition, drugs, falls, sarcopenia, frailty and physical activity) on 6-metre gait speed.


The mean age was 78 years (range 70–96 years) and 71.4% were women. Variables that remained associated with gait speed in the multivariate final model were age (B = − 0.020, p < 0.001); gender (B = − 0.184, p < 0.001); waist-to-height ratio (B = − 0.834, p = 0.002); number of falls (B = − 0.049, p = 0.003) and the number of Fried’s frailty criteria (B = − 0.064, p = 0.019).


Falls, frailty and the waist-to-height ratio modify gait speed in older people with normal gait. Studies analysing the potential effect of several factors on gait speed should consider them as confounding factors.


Gait speed Older people Waist-to-height ratio Frailty Falls Confounding factors 



Funding was provided by ISCIII PI11/01068, and CIBERFES CB16/10/00464 and co-funding was by Feder.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all participants.


  1. 1.
    Freiberger E, de Vreede P, Schoene D et al (2012) Performance-based physical function in older community-dwelling persons: a systematic review of instruments. Age Ageing. 41:712–721. CrossRefGoogle Scholar
  2. 2.
    Chisholm AE, Makepeace S, Inness EL et al (2014) Spatial-temporal gait variability poststroke: variations in measurement and implications for measuring change. Arch Phys Med Rehabil. 95:1335–1341. CrossRefGoogle Scholar
  3. 3.
    Ornetti P, Maillefert JF, Laroche D et al (2010) Gait analysis as a quantifiable outcome measure in hip or knee osteoarthritis: a systematic review. Jt Bone Spine. 77:421–425. CrossRefGoogle Scholar
  4. 4.
    Van Abbema R, De Greef M, Crajé C et al (2015) What type, or combination of exercise can improve preferred gait speed in older adults? A meta-analysis. BMC Geriatr 15:72. CrossRefGoogle Scholar
  5. 5.
    Abellan van KG, Rolland Y, Andrieu S et al (2009) Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) Task Force. J Nutr Health Aging 13:881–889CrossRefGoogle Scholar
  6. 6.
    Frimenko R, Goodyear C, Bruening D (2015) Interactions of sex and aging on spatiotemporal metrics in non-pathological gait: a descriptive meta-analysis. Physiotherapy 101:266–272. CrossRefGoogle Scholar
  7. 7.
    Cesari M, Kritchevsky SB, Penninx BWHJ et al (2005) Prognostic value of usual gait speed in well-functioning older people—results from the health, aging and body composition study. J Am Geriatr Soc 53:1675–1680CrossRefGoogle Scholar
  8. 8.
    Hollman JH, Mcdade EM, Petersen RC (2011) Normative Spatiotemporal gait parameters in older adults. Gait Posture. 34:111–118. CrossRefGoogle Scholar
  9. 9.
    Oberg T, Karsznia A, Oberg K (1993) Basic gait parameters: reference data for normal subjects, 10–79 years of age. J Rehabil Res Dev 30:210–223Google Scholar
  10. 10.
    Oh-Park M, Holtzer R, Xue X et al (2010) Conventional and robust quantitative gait norms in community-dwelling older adults. J Am Geriatr Soc 58:1512–1518CrossRefGoogle Scholar
  11. 11.
    Samson MM, Crowe A, de Vreede PL et al (2001) Differences in gait parameters at a preferred walking speed in healthy subjects due to age, height and body weight. Aging Clin Exp Res 13:16–21CrossRefGoogle Scholar
  12. 12.
    Austin PC, Steyerberg EW (2015) The number of subjects per variable required in linear regression analyses. J Clin Epidemiol 68:627–636. CrossRefGoogle Scholar
  13. 13.
    Arnold CM, Warkentin KD, Chilibeck PD et al (2010) The reliability and validity of handheld dynamometry for the measurement of lower-extremity muscle strength in older adults. J Strength Cond Res 24:815–824. CrossRefGoogle Scholar
  14. 14.
    Studenski S, Peters K, Alley D et al (2014) The FNIH sarcopenia project: Rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci 69:547–558. CrossRefGoogle Scholar
  15. 15.
    Lobo A, Ezquerra J, Gómez Burgada F et al (1979) Cognocitive mini-test (a simple practical test to detect intellectual changes in medical patients). Actas Luso Esp Neurol Psiquiatr Cienc Afines 7:189–202Google Scholar
  16. 16.
    Fried LP, Tangen CM, Walston J et al (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56:M146–M156CrossRefGoogle Scholar
  17. 17.
    Alonso Bouzón C, Carnicero JA, Turín JG et al (2017) The standardization of frailty phenotype criteria improves its predictive ability: the Toledo study for healthy aging. J Am Med Dir Assoc 18:402–408. CrossRefGoogle Scholar
  18. 18.
    Seppala LJ, van de Glind EMM, Daams JG et al (2018) Fall-risk-increasing drugs: a systematic review and meta-analysis: III Others. J Am Med Dir Assoc 19:372.e1–372.e8. CrossRefGoogle Scholar
  19. 19.
    The Anatomical Therapeutic Chemical Classification System with Defined Daily Doses (ATC/DDD) (2003) ATC Index with DDDs 2003. Guidelines for ATC classification and DDD assignment 2003. Accessed Jan 2013
  20. 20.
    Mahoney FI, Barthel DW (1965) Functional evaluation: Barthel index. Md State Med J 14:61–65Google Scholar
  21. 21.
    Lawton MP, Brody EM (1969) Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist 9:179–186CrossRefGoogle Scholar
  22. 22.
    Charlson M, Pompei P, Ales KL et al (1987) A new method of classyfing prognostic comorbidity in longitudinal studies: development and validation. J Chron Dis 40:373–383CrossRefGoogle Scholar
  23. 23.
    Doménech JM (2001) Análisis multivariante: modelos de regresión. UD 5. Construcción de un modelo de regresión múltiple con fines predictivos. Selección de la mejor ecuación. Signo, BarcelonaGoogle Scholar
  24. 24.
    Ashwell M, Gunn P, Gibson S (2012) Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev 13:275–286. CrossRefGoogle Scholar
  25. 25.
    Collard RM, Boter H, Schoevers RA et al (2012) Prevalence of frailty in community-dwelling older persons: a systematic review. J Am Geriatr Soc 60:1487–1492. CrossRefGoogle Scholar
  26. 26.
    World Health Organization (2007) WHO global report on falls prevention in older age.
  27. 27.
    Ayoubi F, Launay CP, Kabeshova A et al (2014) The influence of fear of falling on gait variability: results from a large elderly population-based cross-sectional study. J Neuroeng Rehabil 11:128. CrossRefGoogle Scholar
  28. 28.
    Yang F, Chen QW (2018) Evaluation of frailty and influencing factors in old people in hospital institution: Evidence for a phenotype of frailty. Med (Baltimore) 97:e9634. CrossRefGoogle Scholar
  29. 29.
    Buch A, Carmeli E, Boker LK et al (2016) Muscle function and fat content in relation to sarcopenia, obesity and frailty of old age—an overview. Exp Gerontol 76:25–32. CrossRefGoogle Scholar
  30. 30.
    Kahlaee HR, Latt MD, Schneider CR (2018) Association between chronic or acute use of antihypertensive class of medications and falls in older adults. A systematic review and meta-analysis. Am J Hypertens 31:467–479. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • M. A. Caballero-Mora
    • 1
    • 2
    • 3
    Email author
  • L. Rodríguez Mañas
    • 2
    • 3
  • M. Valdés-Aragonés
    • 1
    • 2
  • I. García-Sánchez
    • 2
  • C. Alonso-Bouzon
    • 1
  • M. Castro Rodríguez
    • 1
  • L. Nuñez-Jimenez
    • 1
  • A. Esteban
    • 4
  • A. Rodriguez-Laso
    • 2
    Email author
  1. 1.Servicio de Geriatría, Geriatric DepartmentHospital Universitario de GetafeGetafeSpain
  2. 2.Fundación de Investigación Biomédica del Hospital Universitario de GetafeGetafeSpain
  3. 3.CIBER de Fragilidad y Envejecimiento SaludableMadridSpain
  4. 4.CIBER de Enfermedades RespiratoriasMadridSpain

Personalised recommendations