Selenium, aging and aging-related diseases

  • Zhonglin Cai
  • Jianzhong Zhang
  • Hongjun LiEmail author


Selenium is an essential trace element in the human body and plays an important role in the body via selenoprotein, which contains selenium. Selenoproteins (glutathione peroxidase, thioredoxin reductase, methionine sulfoxide reductase1 and endoplasmic reticulum-selenoproteins, etc.) have antioxidant effects and are involved in regulating antioxidant activities. Aging is an inevitable process and is always accompanied by aging-related diseases. Reactive oxygen species are important initial factors in aging and aging-related diseases. Selenium contributes to the alleviation of reduced reactive oxygen species-mediated inflammation, reduced DNA damage and prolonged telomere length and thereby plays roles in fighting aging and preventing aging-related diseases. In the elderly, aging-related diseases include neuropsychiatric diseases, tumors, cardiovascular diseases, and skin aging, among others. Selenium supplementation is an important strategy for anti-aging and the prevention of aging-related diseases and is of great significance for the elderly. However, with the accumulation of related research, selenium supplementation does not necessarily contribute to the prevention of aging and aging-related diseases. It is believed that a low level of selenium is beneficial to the human body. Thus, the effect of selenium on human aging and aging-related diseases is still controversial. This paper reviews the research progress and objective role of selenium in aging and aging-related diseases.


Selenium Aging Aging-related disease Reactive oxygen species Oxidative stress 




Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.


  1. 1.
    Jones OR, Scheuerlein A, Salguero-Gómez R et al (2014) Diversity of ageing across the tree of life. Nature 505:169–173CrossRefPubMedGoogle Scholar
  2. 2.
    Vidacek N, Nanic L, Ravlic S et al (2017) Telomeres, nutrition, and longevity: can we really navigate our aging? J Gerontol A Biol Sci Med Sci 73:39–47CrossRefPubMedGoogle Scholar
  3. 3.
    Viña J, Borras C, Abdelaziz KM et al (2013) The free radical theory of aging revisited: the cell signaling disruption theory of aging. Antioxid Redox Signal 19:779–787CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rodier F, Zhou D, Ferbeyre G (2018) Cellular senescence, geroscience, cancer and beyond. Aging (Albany NY). CrossRefGoogle Scholar
  5. 5.
    Liochev SI (2013) Reactive oxygen species and the free radical theory of aging. Free Radic Biol Med 60:1–4CrossRefPubMedGoogle Scholar
  6. 6.
    Childs BG, Durik M, Baker DJ et al (2015) Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21:1424–1435CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Smallwood MJ, Nissim A, Knight AR et al (2018) Oxidative stress in autoimmune rheumatic diseases. Free Radic Biol Med 125:3–14CrossRefPubMedGoogle Scholar
  8. 8.
    Nounou HA, Deif MM, Arafah M (2010) The influence of dexamethasone and the role of some antioxidant vitamins in the pathogenesis of experimental bronchial asthma. J Exp Pharmacol 2:93–103CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lee KH, Jeong D (2012) Bimodal actions of selenium essential for antioxidant and toxic pro-oxidant activities: the selenium paradox (review). Mol Med Rep 5:299–304PubMedGoogle Scholar
  10. 10.
    Kato T, Read R, Rozga J et al (1992) Evidence for intestinal release of absorbed selenium in a form with high hepatic extraction. Am J Physiol 262:G854–G858CrossRefPubMedGoogle Scholar
  11. 11.
    Burk RF, Hill KE (2015) Regulation of selenium metabolism and transport. Annu Rev Nutr 35:109–134CrossRefPubMedGoogle Scholar
  12. 12.
    Olson GE, Winfrey VP, Hill KE et al (2008) Megalin mediates selenoprotein P uptake by kidney proximal tubule epithelial cells. J Biol Chem 283:6854–6860CrossRefPubMedGoogle Scholar
  13. 13.
    Olson GE, Winfrey VP, Nagdas SK et al (2007) Apolipoprotein E receptor-2 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis. J Biol Chem 282:12290–12297CrossRefPubMedGoogle Scholar
  14. 14.
    Suzuki Y, Hashiura Y, Sakai T et al (2013) Selenium metabolism and excretion in mice after injection of (82)Se-enriched selenomethionine. Metallomics 5:445–452CrossRefPubMedGoogle Scholar
  15. 15.
    Ferguson LR, Karunasinghe N, Zhu S et al (2012) Selenium and its’ role in the maintenance of genomic stability. Mutat Res 733:100–110CrossRefPubMedGoogle Scholar
  16. 16.
    McClain CJ, McClain M, Barve S et al (2002) Trace metals and the elderly. Clin Geriatr Med 18:801–818CrossRefPubMedGoogle Scholar
  17. 17.
    Hao Z, Liu Y, Li Y et al (2016) Association between longevity and element levels in food and drinking water of typical chinese longevity area. J Nutr Health Aging 20:897–903CrossRefPubMedGoogle Scholar
  18. 18.
    Huang Y, Rosenberg M, Hou L et al (2017) Relationships among environment, climate, and longevity in China. Int J Environ Res Public Health 14:1195CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Xu JW, Shi XM, Yin ZX et al (2010) Investigation and analysis of plasma trace elements of oldest elderly in longevity areas in China. Zhonghua Yu Fang Yi Xue Za Zhi 44:119–122PubMedGoogle Scholar
  20. 20.
    Alis R, Santos-Lozano A, Sanchis-Gomar F et al (2016) Trace elements levels in centenarian ‘dodgers’. J Trace Elem Med Biol 35:103–106CrossRefPubMedGoogle Scholar
  21. 21.
    Giovannini S, Onder G, Lattanzio F et al (2018) Selenium concentrations and mortality among community-dwelling older adults: results from IlSIRENTE study. J Nutr Health Aging 22:608–612CrossRefPubMedGoogle Scholar
  22. 22.
    Forte G, Deiana M, Pasella S et al (2014) Metals in plasma of nonagenarians and centenarians living in a key area of longevity. Exp Gerontol 60:197–206CrossRefPubMedGoogle Scholar
  23. 23.
    Ma S, Lee SG, Kim EB et al (2015) Organization of the mammalian ionome according to organ origin, lineage specialization, and longevity. Cell Rep 13:1319–1326CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rincon M, Muzumdar R, Atzmon G et al (2004) The paradox of the insulin/IGF-1 signaling pathway in longevity. Mech Ageing Dev 125:397–403CrossRefPubMedGoogle Scholar
  25. 25.
    Broughton SJ, Piper MD, Ikeya T et al (2005) Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci USA 102:3105–3110CrossRefPubMedGoogle Scholar
  26. 26.
    Wu RT, Cao L, Mattson E et al (2017) Opposing impacts on healthspan and longevity by limiting dietary selenium in telomere dysfunctional mice. Aging Cell 16:125–135CrossRefPubMedGoogle Scholar
  27. 27.
    Hammad G, Legrain Y, Touat-Hamici Z et al (2018) Interplay between selenium levels and replicative senescence in WI-38 human fibroblasts: a proteomic approach. Antioxidants (Basel) 7:E19CrossRefGoogle Scholar
  28. 28.
    Legrain Y, Touat-Hamici Z, Chavatte L (2014) Interplay between selenium levels, selenoprotein expression, and replicative senescence in WI-38 human fibroblasts. J Biol Chem 289:6299–6310CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Jiménez-Redondo S, Beltrán de Miguel B, Gavidia Banegas J et al (2014) Influence of nutritional status on health-related quality of life of non-institutionalized older people. J Nutr Health Aging 18:359–364CrossRefPubMedGoogle Scholar
  30. 30.
    Hutchins-Wiese HL, Kleppinger A, Annis K et al (2013) The impact of supplemental n-3 long chain polyunsaturated fatty acids and dietary antioxidants on physical performance in postmenopausal women. J Nutr Health Aging 17:76–80CrossRefPubMedGoogle Scholar
  31. 31.
    Martin H, Aihie Sayer A, Jameson K et al (2011) Does diet influence physical performance in community-dwelling older people? Findings from the Hertfordshire Cohort Study. Age Ageing 40:181–186CrossRefPubMedGoogle Scholar
  32. 32.
    Johansson P, Dahlström Ö, Dahlström U et al (2015) Improved health-related quality of life, and more days out of hospital with supplementation with selenium and coenzyme Q10 combined. Results from a double blind, placebo-controlled prospective study. J Nutr Health Aging 19:870–877CrossRefPubMedGoogle Scholar
  33. 33.
    Chang CH, Ho CT, Liao VH (2017) N-γ-(l-Glutamyl)-l-selenomethionine enhances stress resistance and ameliorates aging indicators via the selenoprotein TRXR-1 in Caenorhabditis elegans. Mol Nutr Food Res 61:1600954CrossRefGoogle Scholar
  34. 34.
    Durieux J, Wolff S, Dillin A (2011) The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144:79–91CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Cesari M, Penninx BW, Pahor M et al (2004) Inflammatory markers and physical performance in older persons: the InCHIANTI study. J Gerontol A Biol Sci Med Sci 59:242–248CrossRefPubMedGoogle Scholar
  36. 36.
    Zhang G, Li J, Purkayastha S et al (2013) Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature 497:211–216CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sasaki M, Ikeda H, Sato Y et al (2008) Proinflammatory cytokine-induced cellular senescence of biliary epithelial cells is mediated via oxidative stress and activation of ATM pathway: a culture study. Free Radic Res 42:625–632CrossRefPubMedGoogle Scholar
  38. 38.
    Mániková D, Šestáková Z, Rendeková J et al (2018) Resveratrol-inspired benzo[b]selenophenes act as anti-oxidants in yeast. Molecules 23:507CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Sun X, Cui Y, Wang Q et al (2018) Proteogenomic analyses revealed favorable metabolism pattern alterations in rotifer Brachionus plicatilis fed with selenium-rich chlorella. J Agric Food Chem 66:6699–6707CrossRefPubMedGoogle Scholar
  40. 40.
    Liu M, Jing H, Zhang J et al (2016) Optimization of mycelia selenium polysaccharide extraction from Agrocybe cylindracea SL-02 and assessment of their antioxidant and anti-ageing activities. PLoS One 11:e0160799CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Yamashita Y, Yabu T, Yamashita M (2010) Discovery of the strong antioxidant selenoneine in tuna and selenium redox metabolism. World J Biol Chem 1:144–150CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Leite MR, Cechella JL, Mantovani AC et al (2015) Swimming exercise and diphenyl diselenide-supplemented diet affect the serum levels of pro- and anti-inflammatory cytokines differently depending on the age of rats. Cytokine 71:119–123CrossRefPubMedGoogle Scholar
  43. 43.
    Tseng CK, Ho CT, Hsu HS et al (2013) Selenium is inversely associated with interleukin-6 in the elderly. J Nutr Health Aging 17:280–284CrossRefPubMedGoogle Scholar
  44. 44.
    Semba RD, Patel KV, Ferrucci L et al (2010) Serum antioxidants and inflammation predict red cell distribution width in older women: the Women’s Health and Aging study I. Clin Nutr 29:600–604CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Rancaño KM, Ralston PA, Lemacks JL et al (2018) Antioxidant intake in relation to serum C-reactive protein in mid-life and older African Americans. Ethn Health. CrossRefPubMedGoogle Scholar
  46. 46.
    Maggio M, Ceda GP, Lauretani F et al (2010) Association of plasma selenium concentrations with total IGF-1 among older community-dwelling adults: the InCHIANTI study. Clin Nutr 29:674–677CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zhang L, Zeng H, Cheng WH (2018) Beneficial and paradoxical roles of selenium at nutritional levels of intake in healthspan and longevity. Free Radic Biol Med 127:3–13CrossRefPubMedGoogle Scholar
  48. 48.
    Zhang X, Zhang L, Zhu JH et al (2016) Nuclear selenoproteins and genome maintenance. IUBMB Life 68:5–12CrossRefPubMedGoogle Scholar
  49. 49.
    Wu RT, Cao L, Chen BP et al (2014) Selenoprotein H suppresses cellular senescence through genome maintenance and redox regulation. J Biol Chem 289:34378–34388CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Cao L, Zhang L, Zeng H et al (2017) Analyses of selenotranscriptomes and selenium concentrations in response to dietary selenium deficiency and age reveal common and distinct patterns by tissue and sex in telomere-dysfunctional mice. J Nutr 147:1858–1866CrossRefPubMedGoogle Scholar
  51. 51.
    Yu RA, Chen HJ, He LF et al (2009) Telomerase activity and telomerase reverse transcriptase expression induced by selenium in rat hepatocytes. Biomed Environ Sci 22:311–317CrossRefPubMedGoogle Scholar
  52. 52.
    Schoenmakers E, Agostini M, Mitchell C et al (2010) Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J Clin Investig 120:4220–4235CrossRefPubMedGoogle Scholar
  53. 53.
    Liu Q, Wang H, Hu DC et al. Effects of sodium selenite on telomerase activity and telomere length. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 2003, 35:1117–1122Google Scholar
  54. 54.
    Liu Q, Wang H, Hu D et al (2004) Effects of trace elements on the telomere lengths of hepatocytes L-02 and hepatoma cells SMMC-7721. Biol Trace Elem Res 100:215–227CrossRefPubMedGoogle Scholar
  55. 55.
    Schomburg L, Schweizer U (2009) Hierarchical regulation of selenoprotein expression and sex-specific effects of selenium. Biochim Biophys Acta 1790:1453–1462CrossRefPubMedGoogle Scholar
  56. 56.
    Rita Cardoso B, Silva Bandeira V, Jacob-Filho W et al (2014) Selenium status in elderly: relation to cognitive decline. J Trace Elem Med Biol 28:422–426CrossRefPubMedGoogle Scholar
  57. 57.
    Berr C, Arnaud J, Akbaraly TN (2012) Selenium and cognitive impairment: a brief-review based on results from the EVA study. Biofactors 38:139–144CrossRefPubMedGoogle Scholar
  58. 58.
    Baierle M, Charão MF, Göethel G et al (2014) Are delta-aminolevulinate dehydratase inhibition and metal concentrations additional factors for the age-related cognitive decline? Int J Environ Res Public Health 11:10851–10867CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Cardoso BR, Hare DJ, Lind M et al (2017) The APOE ε4 allele is associated with lower selenium levels in the brain: implications for Alzheimer’s disease. ACS Chem Neurosci 8:1459–1464CrossRefGoogle Scholar
  60. 60.
    Shahar A, Patel KV, Semba RD et al (2010) Plasma selenium is positively related to performance in neurological tasks assessing coordination and motor speed. Mov Disord 25:1909–1915CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Johnson LA, Phillips JA, Mauer C et al (2013) The impact of GPX1 on the association of groundwater selenium and depression: a project FRONTIER study. BMC Psychiatry 13:7CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Razygraev AV (2010) Pineal gland glutathione peroxidase activity in rats and its age-associated change. Adv Gerontol 23:392–395PubMedGoogle Scholar
  63. 63.
    Demirci K, Nazıroğlu M, Övey İS et al (2017) Selenium attenuates apoptosis, inflammation and oxidative stress in the blood and brain of aged rats with scopolamine-induced dementia. Metab Brain Dis 32:321–329CrossRefPubMedGoogle Scholar
  64. 64.
    Leite MR, Cechella JL, Pinton S et al (2016) A diphenyl diselenide-supplemented diet and swimming exercise promote neuroprotection, reduced cell apoptosis and glial cell activation in the hypothalamus of old rats. Exp Gerontol 82:1–7CrossRefPubMedGoogle Scholar
  65. 65.
    Van der Jeugd A, Parra-Damas A, Baeta-Corral R et al (2018) Reversal of memory and neuropsychiatric symptoms and reduced tau pathology by selenium in 3xTg-AD mice. Sci Rep 8:6431CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Cechella JL, Leite MR, Pinton S et al (2018) Neuroprotective benefits of aerobic exercise and organoselenium dietary supplementation in hippocampus of old rats. Mol Neurobiol 55:3832–3840PubMedGoogle Scholar
  67. 67.
    Balaban H, Nazıroğlu M, Demirci K et al (2017) The protective role of selenium on scopolamine-induced memory impairment, oxidative stress, and apoptosis in aged rats: the involvement of TRPM2 and TRPV1 channels. Mol Neurobiol 54:2852–2868CrossRefPubMedGoogle Scholar
  68. 68.
    Burke KE (2010) Photoaging: the role of oxidative stress. G Ital Dermatol Venereol 145:445–459PubMedGoogle Scholar
  69. 69.
    Rozaini MZH, Ahmad A, Idris A et al (2016) The antioxidant effect of Baeckea frutescens microemulsions dietary supplements on skin absorption studies. Acta Biomater Odontol Scand 2:86–92CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Kim YM, Jung HJ, Choi JS et al (2016) Anti-wrinkle effects of a tuna heart H2O fraction on Hs27 human fibroblasts. Int J Mol Med 37:92–98CrossRefPubMedGoogle Scholar
  71. 71.
    Marotta F, Kumari A, Yadav H et al (2012) Biomarine extracts significantly protect from ultraviolet A-induced skin photoaging: an ex vivo study. Rejuvenation Res 15:157–160CrossRefPubMedGoogle Scholar
  72. 72.
    Marotta F, Polimeni A, Solimene U et al (2012) Beneficial modulation from a high-purity caviar-derived homogenate on chronological skin aging. Rejuvenation Res 15:174–177CrossRefPubMedGoogle Scholar
  73. 73.
    Jobeili L, Rousselle P, Béal D et al (2017) Selenium preserves keratinocyte stemness and delays senescence by maintaining epidermal adhesion. Aging (Albany NY) 9:2302–2315Google Scholar
  74. 74.
    Favrot C, Beal D, Blouin E et al (2018) Age-dependent protective effect of selenium against UVA irradiation in primary human keratinocytes and the associated DNA repair signature. Oxid Med Cell Longev 2018:5895439CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    López-Guarnido O, Urquiza-Salvat N, Saiz M et al (2018) Bioactive compounds of the Mediterranean diet and prostate cancer. Aging Male 27:1–10CrossRefGoogle Scholar
  76. 76.
    Richie JP Jr, Das A, Calcagnotto AM et al (2012) Age related changes in selenium and glutathione levels in different lobes of the rat prostate. Exp Gerontol 47:223–228CrossRefPubMedGoogle Scholar
  77. 77.
    Algotar AM, Behnejad R, Singh P et al (2015) Effect of selenium supplementation on proteomic serum biomarkers in elderly men. J Frailty Aging 4:107–110PubMedPubMedCentralGoogle Scholar
  78. 78.
    Sampson N, Koziel R, Zenzmaier C et al (2011) ROS signaling by NOX4 drives fibroblast-to-myofibroblast differentiation in the diseased prostatic stroma. Mol Endocrinol 25:503–515CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Cheng WH, Wu RT, Wu M et al (2012) Targeting Werner syndrome protein sensitizes U-2 OS osteosarcoma cells to selenium-induced DNA damage response and necrotic death. Biochem Biophys Res Commun 420:24–28CrossRefPubMedGoogle Scholar
  80. 80.
    Chiang EC, Bostwick DG, Waters DJ (2013) Homeostatic housecleaning effect of selenium: evidence that noncytotoxic oxidant-induced damage sensitizes prostate cancer cells to organic selenium-triggered apoptosis. Biofactors 39:575–588CrossRefPubMedGoogle Scholar
  81. 81.
    Waters DJ, Shen S, Kengeri SS et al (2012) Prostatic response to supranutritional selenium supplementation: comparison of the target tissue potency of selenomethionine vs. selenium-yeast on markers of prostatic homeostasis. Nutrients 4:1650–1663CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Holmstrom A, Wu RT, Zeng H et al (2012) Nutritional and supranutritional levels of selenate differentially suppress prostate tumor growth in adult but not young nude mice. J Nutr Biochem 23:1086–1091CrossRefPubMedGoogle Scholar
  83. 83.
    Allen NE, Travis RC, Appleby PN et al (2016) Selenium and prostate cancer: analysis of individual participant data from fifteen prospective studies. J Natl Cancer Inst 108:djw153CrossRefPubMedCentralPubMedGoogle Scholar
  84. 84.
    Pais R, Dumitraşcu DL (2013) Do antioxidants prevent colorectal cancer? A meta-analysis. Rom J Intern Med 51:152–163PubMedGoogle Scholar
  85. 85.
    Dolara P, Bigagli E, Collins A (2012) Antioxidant vitamins and mineral supplementation, life span expansion and cancer incidence: a critical commentary. Eur J Nutr 51:769–781CrossRefPubMedGoogle Scholar
  86. 86.
    Penney KL, Schumacher FR, Li H et al (2010) A large prospective study of SEP15 genetic variation, interaction with plasma selenium levels, and prostate cancer risk and survival. Cancer Prev Res (Phila) 3:604–610CrossRefGoogle Scholar
  87. 87.
    Okoduwa SI, Umar IA, Ibrahim S et al (2015) Age-dependent alteration of antioxidant defense system in hypertensive and type-2 diabetes patients. J Diabetes Metab Disord 14:32CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Lymbury RS, Marino MJ, Perkins AV (2010) Effect of dietary selenium on the progression of heart failure in the ageing spontaneously hypertensive rat. Mol Nutr Food Res 54:1436–1444CrossRefPubMedGoogle Scholar
  89. 89.
    Chan YH, Siu CW, Yiu KH et al (2012) Adverse systemic arterial function in patients with selenium deficiency. J Nutr Health Aging 16:85–88CrossRefPubMedGoogle Scholar
  90. 90.
    Alehagen U, Aaseth J, Alexander J et al (2018) Less fibrosis in elderly subjects supplemented with selenium and coenzyme Q10-A mechanism behind reduced cardiovascular mortality? Biofactors 44:137–147CrossRefPubMedGoogle Scholar
  91. 91.
    Song KD, Dowd SE, Lee HK et al (2013) Long-term dietary supplementation of organic selenium modulates gene expression profiles in leukocytes of adult pigs. Anim Sci J 84:238–246CrossRefPubMedGoogle Scholar
  92. 92.
    Zhan G, Yang N, Xiao B (2015) Rich selenium-Banqiao-Codonopsis pilosula mixture enhances immune function of aging mice. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 31:1346–1349PubMedGoogle Scholar
  93. 93.
    Wang XL, Chen LJ (2014) Effects of the rich selenium-banqiao-Codonopsis pilosula on the aged rats’ immune functions and its underlying mechanism. Zhongguo Ying Yong Sheng Li Xue Za Zhi 30:401–404PubMedGoogle Scholar
  94. 94.
    Gorchakova OV, Gorchakov VN (2015) Increase of drainage and immune functions of the lymph node as a factor of endoecological well-being in elderly and senile age. Adv Gerontol 28:521–526PubMedGoogle Scholar
  95. 95.
    Laurent M, Bastuji-Garin S, Plonquet A et al (2015) Interrelations of immunological parameters, nutrition, and healthcare-associated infections: prospective study in elderly in-patients. Clin Nutr 34:79–85CrossRefGoogle Scholar
  96. 96.
    Ambeskovic M, Fuchs E, Beaumier P et al (2013) Hair trace elementary profiles in aging rodents and primates: links to altered cell homeodynamics and disease. Biogerontology 14:557–567CrossRefPubMedGoogle Scholar
  97. 97.
    Passlack N, Mainzer B, Lahrssen-Wiederholt M et al (2015) Concentrations of strontium, barium, cadmium, copper, zinc, manganese, chromium, antimony, selenium, and lead in the liver and kidneys of dogs according to age, gender, and the occurrence of chronic kidney disease. J Vet Sci 16:57–66CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Johnson-Davis KL, Fernelius C, Eliason NB et al (2011) Blood enzymes and oxidative stress in chronic kidney disease: a cross sectional study. Ann Clin Lab Sci 41:331–339PubMedGoogle Scholar
  99. 99.
    Gondouin B, Jourde-Chiche N, Sallee M et al (2015) Plasma xanthine oxidase activity is predictive of cardiovascular disease in patients with chronic kidney disease, independently of uric acid levels. Nephron 131:167–174CrossRefPubMedGoogle Scholar
  100. 100.
    Broman M, Bryland A, Carlsson O et al (2017) Trace elements in patients on continuous renal replacement therapy. Acta Anaesthesiol Scand 61:650–659CrossRefPubMedGoogle Scholar
  101. 101.
    Reinhardt W, Dolff S, Benson S et al (2015) Chronic kidney disease distinctly affects relationship between selenoprotein P status and serum thyroid hormone parameters. Thyroid 25:1091–1096CrossRefPubMedGoogle Scholar
  102. 102.
    Zachara BA (2015) Selenium and selenium-dependent antioxidants in chronic kidney disease. Adv Clin Chem 68:131–151CrossRefPubMedGoogle Scholar
  103. 103.
    Iglesias P, Selgas R, Romero S et al (2013) Selenium and kidney disease. J Nephrol 26:266–272CrossRefPubMedGoogle Scholar
  104. 104.
    Jayatilake N, Mendis S, Maheepala P et al (2013) Chronic kidney disease of uncertain aetiology: prevalence and causative factors in a developing country. BMC Nephrol 14:180CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Martí del Moral L, Agil A, Navarro-Alarcón M, López-Ga de la Serrana H et al (2011) Altered serum selenium and uric acid levels and dyslipidemia in hemodialysis patients could be associated with enhanced cardiovascular risk. Biol Trace Elem Res 144:496–503CrossRefGoogle Scholar
  106. 106.
    Eaton CB, Abdul Baki AR, Waring ME et al (2010) The association of low selenium and renal insufficiency with coronary heart disease and all-cause mortality: NHANES III follow-up study. Atherosclerosis 212:689–694CrossRefPubMedGoogle Scholar
  107. 107.
    Fujishima Y, Ohsawa M, Itai K et al (2011) Serum selenium levels are inversely associated with death risk among hemodialysis patients. Nephrol Dial Transplant 26:3331–3338CrossRefPubMedGoogle Scholar
  108. 108.
    Stockler-Pinto MB, Malm O, Moraes C et al (2015) A follow-up study of the chronic kidney disease patients treated with Brazil nut: focus on inflammation and oxidative stress. Biol Trace Elem Res 163:67–72CrossRefPubMedGoogle Scholar
  109. 109.
    Salehi M, Sohrabi Z, Ekramzadeh M et al (2013) Selenium supplementation improves the nutritional status of hemodialysis patients: a randomized, double-blind, placebo-controlled trial. Nephrol Dial Transplant 28:716–723CrossRefPubMedGoogle Scholar
  110. 110.
    Zachara BA, Gromadzinska J, Palus J et al (2011) The effect of selenium supplementation in the prevention of DNA damage in white blood cells of hemodialyzed patients: a pilot study. Biol Trace Elem Res 142:274–283CrossRefPubMedGoogle Scholar
  111. 111.
    Taghizadeh L, Eidi A, Mortazavi P et al (2017) Effect of selenium on testicular damage induced by varicocele in adult male Wistar rats. J Trace Elem Med Biol 44:177–185CrossRefPubMedGoogle Scholar
  112. 112.
    Esposito D, Rotondi M, Accardo G et al (2017) Influence of short-term selenium supplementation on the natural course of Hashimoto’s thyroiditis: clinical results of a blinded placebo-controlled randomized prospective trial. J Endocrinol Investig 40:83–89CrossRefGoogle Scholar
  113. 113.
    Sabatino BR, Rohrbach BW, Armstrong PJ et al (2013) Amino acid, iodine, selenium, and coat color status among hyperthyroid, Siamese, and age-matched control cats. J Vet Intern Med 27:1049–1055CrossRefPubMedGoogle Scholar
  114. 114.
    Langford-Smith A, Tilakaratna V, Lythgoe PR et al (2016) Age and smoking related changes in metal ion levels in human lens: implications for cataract formation. PLoS One 11:e0147576CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Christen WG, Glynn RJ, Gaziano JM et al (2015) Age-related cataract in men in the selenium and vitamin e cancer prevention trial eye endpoints study: a randomized clinical trial. JAMA Ophthalmol 133:17–24CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Wollenhaupt SG, Soares AT, Salgueiro WG et al (2014) Seleno- and telluro-xylofuranosides attenuate Mn-induced toxicity in C. elegans via the DAF-16/FOXO pathway. Food Chem Toxicol 64:192–199CrossRefPubMedGoogle Scholar
  117. 117.
    Li WH, Shi YC, Tseng IL et al (2013) Protective efficacy of selenite against lead-induced neurotoxicity in Caenorhabditis elegans. PLoS One 8:e62387CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Heath JC, Banna KM, Reed MN et al (2010) Dietary selenium protects against selected signs of aging and methylmercury exposure. Neurotoxicology 31:169–179CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Chen PC, Guo CH, Tseng CJ et al (2013) Blood trace minerals concentrations and oxidative stress in patients with obstructive sleep apnea. J Nutr Health Aging 17:639–644CrossRefPubMedGoogle Scholar
  120. 120.
    Pan D, Huang H (2013) Hair selenium levels in hepatic steatosis patients. Biol Trace Elem Res 152:305–309CrossRefPubMedGoogle Scholar
  121. 121.
    Roy CN, Semba RD, Sun K et al (2012) Circulating selenium and carboxymethyl-lysine, an advanced glycation endproduct, are independent predictors of anemia in older community-dwelling adults. Nutrition 28:762–766CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Minutoli L, Bitto A, Squadrito F et al (2013) Serenoa repens, lycopene and selenium: a triple therapeutic approach to manage benign prostatic hyperplasia. Curr Med Chem 20:1306–1312CrossRefPubMedGoogle Scholar
  123. 123.
    Ferroni P, Della-Morte D, Palmirotta R et al (2011) Platinum-based compounds and risk for cardiovascular toxicity in the elderly: role of the antioxidants in chemoprevention. Rejuvenation Res 14:293–308CrossRefPubMedGoogle Scholar
  124. 124.
    Stewart MS, Spallholz JE, Neldner KH et al (1999) Selenium compounds have disparate abilities to impose oxidative stress and induce apoptosis. Free Radic Biol 26:42–48CrossRefGoogle Scholar
  125. 125.
    Hoffman DJ (2002) Role of selenium toxicity and oxidative stress in aquatic birds. Aquat Toxicol 57:11–26CrossRefPubMedGoogle Scholar
  126. 126.
    Morgan KL, Estevez AO, Mueller CL et al (2010) The glutaredoxin GLRX-21 functions to prevent selenium-induced oxidative stress in Caenorhabditis elegans. Toxicol Sci 118:530–543CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    McPhee DL, Janz DM (2014) Dietary selenomethionine exposure alters swimming performance, metabolic capacity and energy homeostasis in juvenile fathead minnow. Aquat Toxicol 155:91–100CrossRefPubMedGoogle Scholar
  128. 128.
    Hurst R, Armah CN, Dainty JR et al (2010) Establishing optimal selenium status: results of a randomized, double-blind, placebo-controlled trial. Am J Clin Nutr 91:923–931CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Lloyd B, Lloyd RS, Clayton BE (1983) Effect of smoking, alcohol, and other factors on the selenium status of a healthy population. J Epidemiol Community Health 37:213–217CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Pagmantidis V, Méplan C, van Schothorst EM et al (2008) Supplementation of healthy volunteers with nutritionally relevant amounts of selenium increases the expression of lymphocyte protein biosynthesis genes. Am J Clin Nutr 87:181–189CrossRefPubMedGoogle Scholar
  131. 131.
    van Dronkelaar C, van Velzen A, Abdelrazek M et al (2018) Minerals and sarcopenia; the role of calcium, iron, magnesium, phosphorus, potassium, selenium, sodium, and zinc on muscle mass, muscle strength, and physical performance in older adults: a systematic review. J Am Med Dir Assoc 19:6–11.e3CrossRefPubMedGoogle Scholar
  132. 132.
    Rotter I, Kosik-Bogacka D, Dołęgowska B et al (2015) Relationship between the concentrations of heavy metals and bioelements in aging men with metabolic syndrome. Int J Environ Res Public Health 12:3944–3961CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Younesi S, Parsian H, Hosseini SR et al (2015) Dyshomeostasis of serum oxidant/antioxidant status and copper, zinc, and selenium levels in elderly physically disabled persons: an AHAP-based study. Biol Trace Elem Res 166:136–141CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Urology, Peking Union Medical College Hospital, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina

Personalised recommendations