Effect of a 12-week mixed power training on physical function in dynapenic-obese older men: does severity of dynapenia matter?

  • Livia P. CarvalhoEmail author
  • Charlotte H. Pion
  • Guy El Hajj Boutros
  • Pierrette Gaudreau
  • Stéphanie Chevalier
  • Marc Bélanger
  • José A. Morais
  • Mylène Aubertin-Leheudre
Original Article



Mobility disability affects nearly 15% of people aged 65 or over worldwide. Excess weight or obesity (OB), along with an accentuated loss of muscle strength (dynapenia), is recognized to be one of the most common risk factors for mobility impairment among the elderly.


To investigate the effect of a 12-week mixed power training (MPT high-velocity resistance training mixed with functional exercises) on physical function in obese older men exhibiting different severities of dynapenia.


Community-dwelling older men (69 ± 6 years) were assigned to the study if they were considered obese (OB, fat mass ≥ 25% body weight, BW) and to one of the two groups according to severity of dynapenia [(handgrip strength—HS)/BW]: type 1(OB-DY1) or type 2(OB-DY2), < 1 or 2SD from a young reference group. Participants followed a 12-week MPT, three times/week, 75 min/session. Main outcomes included the performance on the 4-m and 6-min walking tests, Timed Up and Go, stair and balance tests.

Results and discussion

At baseline, OB-DY1 performed better than OB-DY2 in all functional tests (p < 0.05). Following the intervention, medium-to-large training effect size (ES) were observed for fat (ES = 0.21) and lean (ES = 0.32, p < 0.001) masses, functional performance (ES 0.11–0.54, p < 0.05), HS (ES = 0.10, p < 0.05) and lower limb muscle strength (ES = 0.67, p < 0.001) and power (ES = 0.60, p < 0.05). Training-by-group interaction showed that OB-DY1 lost more FM (ES = 0.11, p = 0.03) and OB-DY2 improved more HS (ES = 0.19, p = 0.006) than their counterparts.


Seniors with obesity and severe dynapenia have poorer physical function than those in the early stage of dynapenia. Both seem to benefit from a high-velocity resistance training mixed with functional exercises, although by slightly different pathways.


Resistance training Obesity Exercise Sarcopenia 



This work was supported by the Réseau québécois de recherche sur le vieillissement (RQRV), a thematic network funded by Fonds de Recherche du Québec-Santé (FRQS); and the Groupe de recherche en activité physique adaptée (GRAPA) of the Université du Québec à Montréal (UQÀM). The Fond de Recherche du Québec-Santé (FRQS) supported MAL (Researcher fellowship J2) and LPC (Postdoctoral fellowship).

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Statement of human and animal rights

The study obtained ethical approval from the Institutional Review Board and have been performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki.

Informed consent

Informed consent was obtained from all individual participants for inclusion in the study.


  1. 1.
    Stringhini S, Carmeli C, Jokela M, et al. Socioeconomic status, non-communicable disease risk factors, and walking speed in older adults: multi-cohort population based study. BMJ. 2018;360:k1046. Scholar
  2. 2.
    Bouchard DR, Beliaeff S, Dionne IJ et al (2007) Fat mass but not fat-free mass is related to physical capacity in well-functioning older individuals: nutrition as a determinant of successful aging (NuAge)—the Quebec Longitudinal Study. J Gerontol A Biol Sci Med Sci 62:1382–1388CrossRefGoogle Scholar
  3. 3.
    Rejeski WJ, Marsh AP, Chmelo E et al (2010) Obesity, intentional weight loss, and physical disability in older adults. Obes Rev 11:671–685CrossRefGoogle Scholar
  4. 4.
    Chen H, Guo X (2008) Obesity and functional disability among elder Americans. J Am Ger Soc 56:689–694CrossRefGoogle Scholar
  5. 5.
    Clark BC, Manini TM (2012) What is dynapenia? Nutrition 28:495–503CrossRefGoogle Scholar
  6. 6.
    Batsis JA, Zbehlik AJ, Pidgeon D et al (2015) Dynapenic obesity and the effect on long-term physical function and quality of life: data from the osteoarthritis initiative. BMC Geriatr 15:118-CrossRefGoogle Scholar
  7. 7.
    Barbat-Artigas S, Pinheiro Carvalho L, Rolland Y et al (2016) Muscle strength and body weight mediate the relationship between physical activity and usual gait speed. J Am Med Dir Assoc 17:1031–1036CrossRefGoogle Scholar
  8. 8.
    Iwamura M, Kanauchi M (2017) A cross-sectional study of the association between dynapenia and higher-level functional capacity in daily living in community-dwelling older adults in Japan. BMC Geriatr 17:1CrossRefGoogle Scholar
  9. 9.
    Bouchard DR, Janssen I (2010) Dynapenic-obesity and physical function in older adults. J Gerontol A Biol Sci Med Sci 65:71–77CrossRefGoogle Scholar
  10. 10.
    Alexandre TDS, Scholes S, Ferreira Santos JL et al. The combination of dynapenia and abdominal obesity as a risk factor for worse trajectories of IADL disability among older adults. Clin Nutr. 2017. CrossRefPubMedGoogle Scholar
  11. 11.
    Rossi AP, Fantin F, Caliari C et al (2016) Dynapenic abdominal obesity as predictor of mortality and disability worsening in older adults: a 10-year prospective study. Clin Nutr 35:199–204CrossRefGoogle Scholar
  12. 12.
    Rossi AP, Bianchi L, Volpato S et al (2017) Dynapenic abdominal obesity as a predictor of worsening disability, hospitalization, and mortality in older adults: results from the InCHIANTI study. J Gerontol A Biol Sci Med Sci 72:1098–1104CrossRefGoogle Scholar
  13. 13.
    Barbat-Artigas S, Dupontgand S, Fex A et al (2011) Relationship between dynapenia and cardiorespiratory functions in healthy postmenopausal women: novel clinical criteria. Menopause 18:400–405CrossRefGoogle Scholar
  14. 14.
    Alexandre TDS, Aubertin-Leheudre M, Carvalho LP, et al. Dynapenic obesity as an associated factor to lipid and glucose metabolism disorders and metabolic syndrome in older adults—findings from SABE Study. Clin Nutr. 2017;37(4):1360–1366. CrossRefPubMedGoogle Scholar
  15. 15.
    Yang M, Jiang J, Hao Q et al (2015) Dynapenic obesity and lower extremity function in elderly adults. J Am Med Dir Assoc 16:31–36CrossRefGoogle Scholar
  16. 16.
    Yang M, Ding X, Luo L et al (2014) Disability associated with obesity, dynapenia and dynapenic-obesity in chinese older adults. J Am Med Dir Assoc 15:150.e11–150.e16CrossRefGoogle Scholar
  17. 17.
    Pahor M, Guralnik JM, Ambrosius WT et al (2014) Effect of structured physical activity on prevention of major mobility disability in older adults: the LIFE study randomized clinical trial. JAMA 311:2387–2396CrossRefGoogle Scholar
  18. 18.
    Taylor D (2014) Physical activity is medicine for older adults. Postgrad Med J 90:26–32CrossRefGoogle Scholar
  19. 19.
    Latham NK, Bennett DA, Stretton CM et al (2004) Systematic review of progressive resistance strength training in older adults. J Gerontol A Biol Sci Med Sci 59:48–61CrossRefGoogle Scholar
  20. 20.
    Keysor JJ, Jette AM (2001) Have we oversold the benefit of late-life exercise? J Gerontol A Biol Sci Med Sci 56:M412–M423CrossRefGoogle Scholar
  21. 21.
    Ramírez-Campillo R, Castillo A, de la Fuente CI et al (2014) High-speed resistance training is more effective than low-speed resistance training to increase functional capacity and muscle performance in older women. Exp Gerontol 58:51–57CrossRefGoogle Scholar
  22. 22.
    Sayers SP (2008) High velocity power training in older adults. Curr Aging Sci 1:62–67CrossRefGoogle Scholar
  23. 23.
    Pereira A, Izquierdo M, Silva AJ et al (2012) Effects of high-speed power training on functional capacity and muscle performance in older women. Exp Gerontol 47:250–255CrossRefGoogle Scholar
  24. 24.
    Porter MM (2006) Power training for older adults. Appl Physiol Nutr Metab 31:87–94CrossRefGoogle Scholar
  25. 25.
    Miszko T, Cress ME, Slade J et al (2003) Effect of strength and power training on physical function in community-dwelling older adults. J Gerontol A Biol Sci Med Sci 58:171–175CrossRefGoogle Scholar
  26. 26.
    Orr R, de Vos NJ, Singh NA et al (2006) Power training improves balance in healthy older adults. J Gerontol A Biol Sci Med Sci 61:78–85CrossRefGoogle Scholar
  27. 27.
    Hazell T, Kenno K, Jakobi J. Functional benefit of power training for older adults. J Aging Phys Act. 2007;15(3):349–359CrossRefGoogle Scholar
  28. 28.
    Yoon DH, Kang D, Kim HJ, et al. Effect of elastic band-based high-speed power training on cognitive function, physical performance and muscle strength in older women with mild cognitive impairment. Geriatr Gerontol Int. 2017;17(5):765–772. CrossRefPubMedGoogle Scholar
  29. 29.
    Beijersbergen CM, Hortobagyi T, Beurskens R et al (2016) Effects of power training on mobility and gait biomechanics in old adults with moderate mobility disability: protocol and design of the Potsdam Gait Study (POGS). Gerontology 62:597–603CrossRefGoogle Scholar
  30. 30.
    Lopes PB, Pereira G, Lodovico A et al. Strength and power training effects on lower limb force, functional capacity, and static and dynamic balance in older female adults. Rejuvenation Res. 2016. CrossRefPubMedGoogle Scholar
  31. 31.
    Barbat-Artigas S, Filion ME, Dupontgand S et al (2011) Effects of tai chi training in dynapenic and nondynapenic postmenopausal women. Menopause 18:974–979CrossRefGoogle Scholar
  32. 32.
    Senechal M, Bouchard DR, Dionne IJ et al (2012) The effects of lifestyle interventions in dynapenic-obese postmenopausal women. Menopause 19:1015–1021CrossRefGoogle Scholar
  33. 33.
    Normandin E, Senechal M, Prud’homme D et al (2015) Effects of caloric restriction with or without resistance training in dynapenic-overweight and obese menopausal women: a MONET study. J Frailty Aging 4:155–162PubMedGoogle Scholar
  34. 34.
    Vasconcelos KS, Dias JM, Araujo MC et al (2016) Effects of a progressive resistance exercise program with high-speed component on the physical function of older women with sarcopenic obesity: a randomized controlled trial. Braz J Phys Ther 20:432–440CrossRefGoogle Scholar
  35. 35.
    Batsis JA, Sahakyan KR, Rodriguez-Escudero JP et al (2013) Normal weight obesity and mortality in United States subjects>/=60 years of age (from the Third National Health and Nutrition Examination Survey). Am J Cardiol 112:1592–1598CrossRefGoogle Scholar
  36. 36.
    Lauze M, Martel DD, Aubertin-Leheudre M (2017) Feasibility and effects of a physical activity program using gerontechnology in assisted living communities for older adults. J Am Med Dir Assoc 18:1069–1075CrossRefGoogle Scholar
  37. 37.
    Baumgartner RN, Koehler KM, Gallagher D et al (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147:755–763CrossRefGoogle Scholar
  38. 38.
    Guralnik JM, Simonsick EM, Ferrucci L et al (1994) A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol 49:M85–M94CrossRefGoogle Scholar
  39. 39.
    Podsiadlo D, Richardson S (1991) The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 39:142–148CrossRefGoogle Scholar
  40. 40.
    Crapo RO, Casaburi R, Coates AL et al (2002) ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med 166:111–117CrossRefGoogle Scholar
  41. 41.
    Takai Y, Ohta M, Akagi R et al (2009) Sit-to-stand test to evaluate knee extensor muscle size and strength in the elderly: a novel approach. J Physiol Anthropol 28:123–128CrossRefGoogle Scholar
  42. 42.
    Barbat-Artigas S, Filion M-E, Ringuet M-E et al (2012) Relationship between low muscle strength and metabolic risk factors in obese postmenopausal women: a pilot study. Can J Diabetes 36:269–274CrossRefGoogle Scholar
  43. 43.
    Faul F, Erdfelder E, Buchner A et al (2009) Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods 41:1149–1160CrossRefGoogle Scholar
  44. 44.
    Hornyak V, VanSwearingen JM, Brach JS (2012) Measurement of gait speed. Top Geriatr Rehabil 28:27–32CrossRefGoogle Scholar
  45. 45.
    Kelley DE, Goodpaster B, Wing R et al (1999) Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol 277:E1130–E1141CrossRefGoogle Scholar
  46. 46.
    Jeukendrup AE (2002) Regulation of fat metabolism in skeletal muscle. Ann N Y Acad Sci 967:217–235CrossRefGoogle Scholar
  47. 47.
    Visser M, Goodpaster BH, Kritchevsky SB et al (2005) Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol A Biol Sci Med Sci 60:324–333CrossRefGoogle Scholar
  48. 48.
    Sousa N, Mendes R, Abrantes C et al (2011) Differences in maximum upper and lower limb strength in older adults after a 12 week intense resistance training program. J Hum Kinet 30:183–188CrossRefGoogle Scholar
  49. 49.
    Tieland M, Verdijk LB, de Groot LC et al (2015) Handgrip strength does not represent an appropriate measure to evaluate changes in muscle strength during an exercise intervention program in frail older people. Int J Sport Nutr Exerc Metab 25:27–36CrossRefGoogle Scholar
  50. 50.
    Scott D, Sanders KM, Aitken D et al (2014) Sarcopenic obesity and dynapenic obesity: 5-year associations with falls risk in middle-aged and older adults. Obesity (Silver Spring) 22:1568–1574CrossRefGoogle Scholar
  51. 51.
    Kanegusuku H, Queiroz ACC, Chehuen MR et al (2011) Strength and power training did not modify cardiovascular responses to aerobic exercise in elderly subjects. Braz J Med Biol Res 44:864–870CrossRefGoogle Scholar
  52. 52.
    Wilson JM, Loenneke JP, Jo E et al (2012) The effects of endurance, strength, and power training on muscle fiber type shifting. J Strength Cond Res 26:1724–1729CrossRefGoogle Scholar
  53. 53.
    Clark BC, Manini TM (2012) Dynapenia and aging: an update. Nutrition 28:495–503CrossRefGoogle Scholar
  54. 54.
    St-Jean-Pelletier F, Pion CH, Leduc-Gaudet JP, et al. The impact of ageing, physical activity, and pre-frailty on skeletal muscle phenotype, mitochondrial content, and intramyocellular lipids in men. J Cachexia Sarcopenia Muscle. 2017;8(2):213–228. CrossRefPubMedGoogle Scholar
  55. 55.
    Lieber RL, Friden J. Clinical significance of skeletal muscle architecture. Clin Orthop Relat Res. 2001;383:140–151CrossRefGoogle Scholar
  56. 56.
    Hughes VA, Frontera WR, Wood M et al (2001) Longitudinal muscle strength changes in older adults: influence of muscle mass, physical activity, and health. J Gerontol A Biol Sci Med Sci 56:B209–B217CrossRefGoogle Scholar
  57. 57.
    Pion CH, Barbat-Artigas S, St-Jean-Pelletier F et al (2017) Muscle strength and force development in high- and low-functioning elderly men: influence of muscular and neural factors. Exp Gerontol 96:19–28CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Livia P. Carvalho
    • 1
    • 2
    Email author
  • Charlotte H. Pion
    • 2
    • 3
  • Guy El Hajj Boutros
    • 1
    • 2
  • Pierrette Gaudreau
    • 4
  • Stéphanie Chevalier
    • 5
  • Marc Bélanger
    • 1
  • José A. Morais
    • 5
  • Mylène Aubertin-Leheudre
    • 1
    • 2
  1. 1.Département des Sciences de l’Activité PhysiqueUniversité du Québec à Montréal, (UQAM) Pavillon des sciences biologiques (SB)MontrealCanada
  2. 2.Centre de Recherche de l’Institut Universitaire de Gériatrie de MontréalUniversité de MontréalMontrealCanada
  3. 3.Département de BiologieUniversité du Québec à MontréalMontrealCanada
  4. 4.Centre Hospitalier de l’Université de Montréal, Faculté de MédecineUniversité de MontréalMontrealCanada
  5. 5.McGill University Health Centre, Research Institute and Geriatric Medicine, Faculty of MedicineMcGill UniversityMontrealCanada

Personalised recommendations