Advertisement

Obesity and hormonal contraception: an overview and a clinician’s practical guide

  • Sarah Cipriani
  • Tommaso Todisco
  • Irene Scavello
  • Vincenza Di Stasi
  • Elisa Maseroli
  • Linda VignozziEmail author
Review
  • 12 Downloads

Abstract

Background

The growing prevalence of obesity among the fertile female population poses a considerable problem to contraceptive providers. Obese women, who are more at risk for venous thromboembolism and cardiovascular events due to their condition, might be at an even higher risk of developing thromboembolic events when on medical contraception. Combined hormonal contraceptives might be less effective in obese women and may lead to unacceptable metabolic side effects for this population. In addition, the lack of safety data for weight loss drugs and the higher risk for complications during and after pregnancy require a close surveillance of the fertility status of obese patients.

Objective

The aim of this narrative review is to summarize the available medical contraceptive options and to give the readers a practical guidance for a wise contraceptive choice with regards to obesity.

Methods

A general literature review of peer-reviewed publications on the topic “obesity and contraception” was performed using the PubMed database.

Results

Nowadays, there are many useful tools that help clinicians in choosing among the wide range of therapeutic possibilities, such as the World Health Organization (WHO) Medical Eligibility Criteria for contraceptive use. Furthermore, the great diversity of hormonal contraceptive formulations (combined hormonal formulations; progestin-only methods) and active substances (different estrogens and progestins) allow physicians to tailor therapies to patients’ clinical peculiarities.

Conclusion

Long-acting reversible contraceptives [progestin-only implants, levonorgestrel-intra-uterine devices (IUDs) and copper IUDs] and progestin-only methods in general are excellent options for many categories of patients, including obese ones.

Level of evidence

V, narrative review.

Keywords

Obesity Contraception Contraceptive methods Thromboembolic risk Combined hormonal contraceptives Progestin-only contraceptives 

Notes

Compliance with ethical standards

Conflict of interest

Author Prof. Linda Vignozzi has received research grant fundings from Theramex and from Bayer. The authors Dr. Sarah Cipriani, Dr. Tommaso Todisco, Dr. Irene Scavello, Dr. Vincenza Di Stasi, and Dr. Elisa Maseroli declare that they have no conflict of interest.

Ethical approval

This article does not deal directly with a study conducted on animals or humans by our research group.

Informed consent

For this type of study formal consent is not required.

References

  1. 1.
    Bearak J et al (2018) Global, regional, and subregional trends in unintended pregnancy and its outcomes from 1990 to 2014: estimates from a Bayesian hierarchical model. Lancet Glob Health 6(4):e380–e389CrossRefGoogle Scholar
  2. 2.
    Vahratian A et al (2009) Family-planning practices among women with diabetes and overweight and obese women in the 2002 National Survey For Family Growth. Diabetes Care 32(6):1026–1031CrossRefGoogle Scholar
  3. 3.
    Heslehurst N, Simpson H et al (2008) The impact of maternal BMI status on pregnancy outcomes with immediate short-term obstetric resource implications: a meta-analysis. Obes Rev 9(6):635–683CrossRefGoogle Scholar
  4. 4.
    Catalano PM, Shankar K (2017) Obesity and pregnancy: mechanisms of short term and long term adverse consequences for mother and child. BMJ 8(356):j1CrossRefGoogle Scholar
  5. 5.
    Marsh CA, Hecker E (2014) Maternal obesity and adverse reproductive outcomes. Obstet Gynecol Surv 69(10):622–628CrossRefGoogle Scholar
  6. 6.
    EPAR (European Public Assessment Reports)—product Information for naltrexone/bupropione. https://www.ema.europa.eu/en/documents/overview/mysimba-epar-summary-public_en.pdf. Accessed 9 Sept 2019
  7. 7.
    Damhof MA et al (2019) Assessment of contraceptive counseling and contraceptive use in women after bariatric surgery. Obes Surg.  https://doi.org/10.1007/s11695-019-04084-z Google Scholar
  8. 8.
    Hales CM et al (2017) Prevalence of obesity among adults and youth: United States, 2015–2016. Natl Cent Health Stat Data Brief 288:1–8Google Scholar
  9. 9.
    Darvall KA et al (2007) Obesity and thrombosis. Eur J Vasc Endovasc Surg 33(2):223–233CrossRefGoogle Scholar
  10. 10.
    Edelman AB, Carlson NE et al (2009) Impact of obesity on oral contraceptive pharmacokinetics and hypothalamic-pituitary-ovarian activity. Contraception 80(2):119–127CrossRefGoogle Scholar
  11. 11.
    Natavio M et al (2019) Pharmacokinetics of the 1.5 mg levonorgestrel emergency contraceptive in women with normal, obese and extremely obese body mass index. Contraception 99(5):306–311CrossRefGoogle Scholar
  12. 12.
    Christin-Maitre S (2013) History of oral contraceptive drugs and their use worldwide. Best Pract Res Clin Endocrinol Metab 27(1):3–12CrossRefGoogle Scholar
  13. 13.
    Zimmerman Y et al (2014) The effect of combined oral contraception on testosterone levels in healthy women: a systematic review and meta-analysis. Hum Reprod Update 20(1):76–105CrossRefGoogle Scholar
  14. 14.
    Walsh BW, Sacks FM (1993) Effects of low dose oral contraceptives on very low density and low density lipoprotein metabolism. J Clin Investig 91(5):2126–2132CrossRefGoogle Scholar
  15. 15.
    Coelingh Bennink HJ (2004) Are all estrogens the same? Maturitas 47:269–275CrossRefGoogle Scholar
  16. 16.
    Lindberg UB et al (1989) A comparison between effects of estradiol valerate and low dose ethinyl estradiol on haemostasis parameters. J Thromb Haemost 61(1):65–69CrossRefGoogle Scholar
  17. 17.
    Sitruk-Ware R, Nath A (2013) Characteristics and metabolic effects of estrogen and progestins contained in oral contraceptive pills. Best Pract Res Clin Endocrinol Metab 27(1):13–24CrossRefGoogle Scholar
  18. 18.
    Goebelsmann U, Mashchak CA, Mishell DR Jr (1985) Comparison of hepatic impact of oral and vaginal administration of ethinyl estradiol. Am J Obstet Gynecol 151(7):868–877CrossRefGoogle Scholar
  19. 19.
    Stegeman BH et al (2013) Effect of ethinylestradiol dose and progestagen in combined oral contraceptives on plasma sex hormone-binding globulin levels in premenopausal women. J Thromb Haemost 11(1):203–205CrossRefGoogle Scholar
  20. 20.
    Simó R, Sáez-López C et al (2015) Novel insights in SHBG regulation and clinical implications. Trends Endocrinol Metab 26(7):376–383CrossRefGoogle Scholar
  21. 21.
    Sitruk-Ware R, Plu-Bureau G et al (2007) Effects of oral and transvaginal ethinyl estradiol on hemostatic factors and hepatic proteins in a randomized, crossover study. J Clin Endocrinol Metab 92(6):2074–2079CrossRefGoogle Scholar
  22. 22.
    Sitruk-Ware RL, Menard J et al (2007) Comparison of the impact of vaginal and oral administration of combined hormonal contraceptives on hepatic proteins sensitive to estrogen. Contraception 75(6):430–437CrossRefGoogle Scholar
  23. 23.
    De Bastos M, Stegeman BH et al (2014) Combined oral contraceptives: venous thrombosis. Cochrane Database Syst Rev 3:CD010813Google Scholar
  24. 24.
    Timmer CJ, Geurts TB (1999) Bioequivalence assessment of three different estradiol formulations in postmenopausal women in an open, randomized, single-dose, 3-way cross-over study. Eur J Drug Metab Pharmacokinet 24(1):47–53CrossRefGoogle Scholar
  25. 25.
    Raps M, Rosendaal F et al (2013) Resistance to APC and SHBG levels during use of a four-phasic oral contraceptive containing dienogest and estradiol valerate: a randomized controlled trial. J Thromb Haemost 11(5):855–861CrossRefGoogle Scholar
  26. 26.
    Schindler AE et al (2008) Classification and pharmacology of progestins. Maturitas 61(1–2):171–180CrossRefGoogle Scholar
  27. 27.
    Amiri M, Ramezani Tehrani F et al (2017) Effects of oral contraceptives on metabolic profile in women with polycystic ovary syndrome: a meta-analysis comparing products containing cyproterone acetate with third generation progestins. Metabolism 73:22–35CrossRefGoogle Scholar
  28. 28.
    Sitruk-Ware R, Nath A (2010) The use of newer progestins for contraception. Contraception 82(5):410–417CrossRefGoogle Scholar
  29. 29.
    McElroy SL, Guerdjikova AI, Mori N, Romo-Nava F (2019) Progress in developing pharmacologic agents to treat bulimia nervosa. Cent Nerv Syst Drugs 33(1):31–46Google Scholar
  30. 30.
    Kemmeren JM, Algra A et al (2002) Effects of second and third generation oral contraceptives and their respective progestagens on the coagulation system in the absence or presence of the factor V Leiden mutation. J Thromb Haemost 87:199–205CrossRefGoogle Scholar
  31. 31.
    Kemmeren JM et al (2004) Effect of second- and third-generation oral contraceptives on the protein C system in the absence or presence of the factor V Leiden mutation: a randomized trial. Blood 103:927–933CrossRefGoogle Scholar
  32. 32.
    Mansour D et al (2011) Efficacy and tolerability of a monophasic combined oral contraceptive containing nomegestrol acetate and 17β-oestradiol in a 24/4 regimen, in comparison to an oral contraceptive containing ethinylestradiol and drospirenone in a 21/7 regimen. Eur J Contracept Reprod Health Care 16(6):430–443CrossRefGoogle Scholar
  33. 33.
    Fels H, Steward R, Melamed A et al (2013) Comparison of serum and cervical mucus hormone levels during hormone-free interval of 24/4 vs 21/7 combined oral contraceptives. J Contracept 87(6):732–737CrossRefGoogle Scholar
  34. 34.
    Van Vliet HA et al (2011) Triphasic versus monophasic oral contraceptives for contraception. Cochrane Database Syst Rev 9(11):003553Google Scholar
  35. 35.
    Van den Heuvel MW, van Bragt AJ et al (2005) Comparison of ethinylestradiol pharmacokinetics in three hormonal contraceptive formulations: the vaginal ring, the transdermal patch and an oral contraceptive. Contraception 72(3):168–174CrossRefGoogle Scholar
  36. 36.
    Abrams LS, Skee DM et al (2002) Pharmacokinetics of a contraceptive patch (Evra™/Ortho Evra™) containing norelgestromin and ethinyloestradiol at four application sites. Br J Clin Pharmacol 53(2):141–146CrossRefGoogle Scholar
  37. 37.
    Roumen FJME, Mishell DR Jr (2012) The contraceptive vaginal ring, NuvaRing®, a decade after its introduction. Eur J Contracept Reprod Health Care 17(6):415–427CrossRefGoogle Scholar
  38. 38.
    Ahrendt HJ et al (2006) Efficacy, acceptability and tolerability of the combined contraceptive ring, NuvaRing, compared with an oral contraceptive containing 30 mcg of ethinyl estradiol and 3 mg of drospirenone. Contraception 74:451–457CrossRefGoogle Scholar
  39. 39.
    Oddsson K et al (2005) Efficacy and safety of a contraceptive vaginal ring (NuvaRing) compared with a combined oral contraceptive: a 1-year randomized trial. Contraception 71:176–182CrossRefGoogle Scholar
  40. 40.
    Buckman MT, Johnson J et al (1980) Differential lipemic and proteinemic response to oral ethinyl estradiol and parenteral estradiol cypionate. Metab Clin Exp 29(9):803–805CrossRefGoogle Scholar
  41. 41.
    Jensen JT, Burke AE et al (2008) Effects of switching from oral to transdermal or transvaginal contraception on markers of thrombosis. Contraception 78(6):451–458CrossRefGoogle Scholar
  42. 42.
    Bachmann G, Korner P (2009) Bleeding patterns associated with non-oral hormonal contraceptives: a review of the literature. Contraception 79(4):247–258CrossRefGoogle Scholar
  43. 43.
    Burke AE (2011) The state of hormonal contraception today: benefits and risks of hormonal contraceptives: progestin-only contraceptives. Am J Obstet Gynecol 205(4 Suppl):S14–S17CrossRefGoogle Scholar
  44. 44.
    Kapp N, Curtis K, Nanda K (2010) Progestogen-only contraceptive use among breastfeeding women: a systematic review. Contraception 82:17–37CrossRefGoogle Scholar
  45. 45.
    Belsey EM, D’Arcangues C, Carlson N (1988) Determinants of menstrual bleeding patterns among women using natural and hormonal methods of contraception. II. The influence of individual characteristics. Contraception 38(2):243–257CrossRefGoogle Scholar
  46. 46.
    Zigler RE, McNicholas C (2017) Unscheduled vaginal bleeding with progestin-only contraceptive use. Am J Obstet Gynecol 216(5):443–450CrossRefGoogle Scholar
  47. 47.
    Wu JP, Moniz MH, Ursu AN (2018) Long-acting reversible contraception—highly efficacious, safe, and underutilized. J Am Med Assoc 320(4):397–398CrossRefGoogle Scholar
  48. 48.
    Nilsson CG, Lahteenmaki PLA, Luukkainen T, Robertson DN (1986) Sustained intrauterine release of levonorgestrel over five years. Fertil Steril 45(6):805–807CrossRefGoogle Scholar
  49. 49.
    Allison K et al (2006) Night eating syndrome and binge eating disorder among persons seeking bariatric surgery: prevalence and related features. Surg Obes Relat Dis 2(2):153–158.  https://doi.org/10.1016/j.soard.2006.03.014 CrossRefGoogle Scholar
  50. 50.
    Mac Neil BA et al (2017) A case of symptom relapse post placement of intrauterine device (IUD) in a patient with bulimia nervosa: consequence or coincidence. Eat Weight Disord Stud Anorex Bulim Obes 22:369CrossRefGoogle Scholar
  51. 51.
    Roy G (2010) Injectable contraception. Semin Reprod Med 28:126–132CrossRefGoogle Scholar
  52. 52.
    Jacobstein R, Polis CB (2014) Progestin-only contraception: injectables and implants. Best Pract Res Clin Obstet Gynecol 28(6):795–806CrossRefGoogle Scholar
  53. 53.
    Hubacher D, Lopez L, Steiner MJ, Dorflinger L (2009) Menstrual pattern changes from levonorgestrel subdermal implants and DMPA: systematic review and evidence-based comparisons. Contraception 80:113–118CrossRefGoogle Scholar
  54. 54.
    Nath A, Sitruk-Ware R (2010) Progesterone vaginal ring for contraceptive use during lactation. Contraception 82(5):428–434CrossRefGoogle Scholar
  55. 55.
    Gallo MF et al (2014) Combination contraceptives: effects on weight. Cochrane Database Syst Rev 29(1):CD003987Google Scholar
  56. 56.
    Lopez LM, Edelman A et al (2013) Progestin-only contraceptives: effects on weight. Cochrane Database Syst Rev 28(8):CD008815Google Scholar
  57. 57.
    Nelson AL (2007) Combined hormonal contraceptive methods. In: Hatcher RA et al (eds) Oral contraceptives, 19th edn. Contraceptive Technologies Inc, New York, pp 193–270Google Scholar
  58. 58.
    Kang AK, Duncan JA et al (2001) Effect of oral contraceptives on the renin angiotensin system and renal function. Am J Physiol Regul Integr Comp Physiol 280:R807–R813CrossRefGoogle Scholar
  59. 59.
    Gordon MS, Chin WW, Shupnik MA (1992) Regulation of angiotensinogen gene expression by estrogen. J Hypertens 10:361–366CrossRefGoogle Scholar
  60. 60.
    Marieb EN, Hoehn K (2013) Human anatomy and physiology. Pearson, LondonGoogle Scholar
  61. 61.
    Silva Dos Santos PN et al (2017) Changes in body composition in women using long-acting reversible contraception. Contraception 95(4):382–389CrossRefGoogle Scholar
  62. 62.
    Amatayakul K, Sivasomboon B, Thanangkul O (1980) A study of the mechanism of weight gain in medroxyprogesterone acetate users. Contraception 22(6):605–622CrossRefGoogle Scholar
  63. 63.
    Mayeda ER, Torgal AH, Westhoff CL (2014) Weight and body composition changes during oral contraceptive use in obese and normal weight women. J Women’s Health (Larchmt) 23(1):38–43CrossRefGoogle Scholar
  64. 64.
    Reubinoff BE et al (1995) Effects of low-dose estrogen oral contraceptives on weight, body composition, and fat distribution in young women. Fertil Steril 63(3):516CrossRefGoogle Scholar
  65. 65.
    Samuelsson E, Staffan HA (2004) Incidence of venous thromboembolism in young Swedish women and possibly preventable cases among combined oral contraceptive users. Acta Obstet Gynecol Scand 83:674–681CrossRefGoogle Scholar
  66. 66.
    Reid R et al (2011) Oral contraceptives and the risk of venous thromboembolism: an update. Int J Gynecol Obstet 112(3):252–256.  https://doi.org/10.1016/j.ijgo.2010.12.003 CrossRefGoogle Scholar
  67. 67.
    Samama MM (2000) An epidemiologic study of risk factors for deep vein thrombosis in medical outpatients: the Sirius study. Arch Intern Med 160(22):3415–3420CrossRefGoogle Scholar
  68. 68.
    White HR, Gettner S, Newman J, Trauner KB, Romano SP (2000) Predictors of rehospitalization for symptomatic venous thromboembolism after total hip arthroplasty. N Engl J Med 343(24):1758–1764CrossRefGoogle Scholar
  69. 69.
    Curtis KM et al (2016) U.S. medical eligibility criteria for contraceptive use. MMWR Recomm Rep 65(3):1–103.  https://doi.org/10.15585/mmwr.rr6503a1 CrossRefGoogle Scholar
  70. 70.
    WHO (2015) Medical eligibility criteria for contraceptive use, 5th edn. World Health Organization, GenevaGoogle Scholar
  71. 71.
    UKMEC (2016) UK Medical Eligibility Criteria for Contraceptive Use (UKMEC 2016), Faculty of Sexual and Reproductive Healthcare. http://www.fsrh.org/pdfs/UKMEC2016.pdf. Accessed 9 Sept 2019
  72. 72.
    Practice Committee of the American Society for Reproductive Medicine, Practice Committee of the American Society for Reproductive Medicine (2017) Combined hormonal contraception and the risk of venous thromboembolism: a guideline. Fertil Steril 107(1):43–51CrossRefGoogle Scholar
  73. 73.
    Middeldorp S (2011) Is thrombophilia testing useful? Hematology. Am Soc Hematol Educ Prog.  https://doi.org/10.1182/asheducation-2011.1.150 Google Scholar
  74. 74.
    Van Vlijmen EFW, Wiewel-Verschueren S, Monster TBM, Meijer K (2016) Combined oral contraceptives, thrombophilia and the risk of thromboembolism: a systematic review and meta-analysis. J Thromb Haemost 14(7):1393–1403CrossRefGoogle Scholar
  75. 75.
    Holt VL, Scholes D, Wicklund KG, Cushing-Haugen KL, Daling JR (2005) Body mass index, weight, and oral contraceptive failure risk. Obstet Gynecol 105(1):46–52CrossRefGoogle Scholar
  76. 76.
    Yamazaki M, Dwyer K et al (2015) Effect of obesity on the effectiveness of hormonal contraceptives: an individual participant data meta-analysis. Contraception 92(5):445–452CrossRefGoogle Scholar
  77. 77.
    Edelman AB et al (2013) Prolonged monitoring of ethinyl estradiol and levonorgestrel levels confirms an altered pharmacokinetic profile in obese oral contraceptives users. Contraception 87(2):220–226.  https://doi.org/10.1016/j.contraception.2012.10.008 CrossRefGoogle Scholar
  78. 78.
    McNicholas C et al (2013) Contraceptive failures in overweight and obese combined hormonal contraceptive users. Obstet Gynecol 121(3):585–592.  https://doi.org/10.1097/AOG.0b013e31828317cc CrossRefGoogle Scholar
  79. 79.
    Luo D, Westhoff CL et al (2019) Altered pharmacokinetics of combined oral contraceptives in obesity—multistudy assessment. Contraception 99(4):256–263CrossRefGoogle Scholar
  80. 80.
    Taponen S et al (2003) Hormonal profile of women with self-reported symptoms of oligomenorrhea and/or hirsutism: Northern Finland birth cohort 1966 study. J Clin Endocrinol Metab 88(1):141–147.  https://doi.org/10.1210/jc.2002-020982 CrossRefGoogle Scholar
  81. 81.
    Martin KA, Anderson RR et al (2018) Evaluation and treatment of hirsutism in premenopausal women: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 103(4):1233–1257CrossRefGoogle Scholar
  82. 82.
    Mantha S, Karp R, Raghavan V et al (2012) Assessing the risk of venous thromboembolic events in women taking progestin-only contraception: a meta-analysis. Br Med J 345:e4944–e4944.  https://doi.org/10.1136/bmj.e494 CrossRefGoogle Scholar
  83. 83.
    Lidegaard O, Nielsen LH et al (2011) Risk of venous thromboembolism from use of oral contraceptives containing different progestogens and oestrogen doses: Danish cohort study, 2001–9. Br Med J 343:d6423–d6423.  https://doi.org/10.1136/bmj.d6423 CrossRefGoogle Scholar
  84. 84.
    Ruan X, Seeger H, Mueck AO (2012) The pharmacology of nomegestrol acetate. Maturitas 71(4):345–353.  https://doi.org/10.1016/j.maturitas.2012.01.007 CrossRefGoogle Scholar
  85. 85.
    Shaw KA, Edelman AB (2013) Obesity and oral contraceptives: a clinician’s guide. Best Pract Res Clin Endocrinol Metab 27(1):55–65.  https://doi.org/10.1016/j.beem.2012.09.001 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Andrology, Women’s Endocrinology and Gender Incongruence Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly

Personalised recommendations