Advertisement

DRD2/ANKK1 TaqI A1 polymorphism associates with overconsumption of unhealthy foods and biochemical abnormalities in a Mexican population

  • Ingrid Rivera-Iñiguez
  • Arturo Panduro
  • Omar Ramos-Lopez
  • Sergio Javier Villaseñor-Bayardo
  • Sonia RomanEmail author
Original Article
Part of the following topical collections:
  1. Food and Addiction

Abstract

Purpose

The dopamine receptor 2/ankyrin repeat domain and content kinase 1 (DRD2/ANKK1) TaqIA polymorphism (rs1800497) has been associated with rewarding behaviors. This study aimed to investigate the association of DRD2/ANKK1 TaqIA polymorphism with the dietary intake, the intake frequency of food groups and biochemical profile in Mexican mestizo subjects.

Methods

A cross-sectional/analytical study with 276 Mexican subjects was performed. Dietary intake was assessed with a 24-h recall and a food frequency questionnaire (FFQ). An allelic discrimination assay evaluated DRD2/ANKK1 TaqIA genotypes. Anthropometric and biochemical data were evaluated.

Results

Genotype frequencies were A1A1 (18.48%), A1A2 (45.29%) and A2A2 (36.23%). TaqI A1 allele carriers had a higher intake of carbohydrates (p = 0.038), meats (p = 0.005), fried dishes (p = 0.039), and sugars (p = 0.009). Male TaqI A1 carriers consumed more carbohydrates (p = 0.009) and meats (p = 0.018) while females consumed fewer legumes (p = 0.005). TaqI A1 carriers had glucose (p = 0.037) and triglycerides (p = 0.011) abnormalities. TaqI A1 was associated with higher risk of consumption of unhealthy foods such as fried dishes (OR 3.79, 95% CI 1.53–9.35, p = 0.002) and meats (OR 2.31, 95% CI 1.32–4.05, p = 0.003), and lower healthy foods (OR 1.89, 95% CI 1.04–3.29, p = 0.038). TaqI A1 allele was associated with risk of abnormal glucose, triglycerides, and VLDL levels (OR 2.148, 95% CI 1.068–4.322, p = 0.036; OR 1.999, 95% CI 1.194–3.348, p = 0.011; OR 2.021, 95% CI 1.203–3.392, p = 0.007), respectively.

Conclusions

The presence of the TaqI A1 allele in Mexicans is a genetic risk factor for detrimental dietary quality that may predispose to metabolic disturbances.

Level of evidence

Level III, case-control analytic study.

Keywords

Dopamine Dopamine receptors Food behavior Obesity Dyslipidemia 

Notes

Acknowledgements

The authors acknowledge the help of the entire team at the Nutrigenetic Clinic of the Department of Molecular Biology in Medicine at the Civil Hospital of Guadalajara “Fray Antonio Alcalde”.

Funding

This study was supported by PRODEP-UNIVERSIDAD DE GUADALAJARA CA478, Guadalajara, Jalisco, Mexico (CA478).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study protocol was approved by the Institutional Review Board of the Civil Hospital of Guadalajara “Fray Antonio Alcalde”, Guadalajara, Jalisco, Mexico.

Informed consent

Written consent was obtained from each participant.

Supplementary material

40519_2018_596_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 13 KB)

References

  1. 1.
    Blum K, Sheridan P, Wood R et al (1996) The D2 dopamine receptor gene as a determinant of reward deficiency syndrome. J R Soc Med 89:396–400.  https://doi.org/10.1177/014107689608900711 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    MacKillop J (2013) Integrating behavioral economics and behavioral genetics: delayed reward discounting as an endophenotype for addictive disorders. J Exp Anal Behav 99:14–31.  https://doi.org/10.1002/jeab.4 CrossRefPubMedGoogle Scholar
  3. 3.
    Noble E, Zhang X, Ritchie T, Sparkes R (2000) Haplotypes at the DRD2 locus and severe alcoholism. Am J Med Genet 96:622–631. https://doi.org/10.1002/1096-8628(20001009)96:5<622::AID-AJMG7>3.0.CO;2-5CrossRefPubMedGoogle Scholar
  4. 4.
    Richter A, Barman A, Wustenberg T et al (2017) Behavioral and neural manifestations of reward memory in carriers of low-expressing versus high-expressing genetic variants of the dopamine D2 receptor. Front Psychol 8:654.  https://doi.org/10.3389/fpsyg.2017.00654 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Smillie L, Cooper A, Proitsi P et al (2010) Variation in DRD2 dopamine gene predicts extraverted personality. Neurosci Lett 468:234–237.  https://doi.org/10.1016/j.neulet.2009.10.095 CrossRefPubMedGoogle Scholar
  6. 6.
    Neville M, Johnstone E, Walton R (2004) Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Hum Mutat 23:540–545.  https://doi.org/10.1002/humu.20039 CrossRefPubMedGoogle Scholar
  7. 7.
    Pohjalainen T, Rinne J, Nagren K et al (1998) The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Mol Psychiatry 3:56–260.  https://doi.org/10.1038/sj.mp.4000350 CrossRefGoogle Scholar
  8. 8.
    Tryon M, Stanhope K, Epel E et al (2015) Excessive sugar consumption may be a difficult habit to break: a view from the brain and body. J Clin Endocrinol Metab 100:2239–2247.  https://doi.org/10.1210/jc.2014-4353 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hyman S, Malenka R, Nestler E (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598.  https://doi.org/10.1146/annurev.neuro.29.051605.113009 CrossRefPubMedGoogle Scholar
  10. 10.
    Russo S, Nestler E (2013) The brain reward circuitry in mood disorders. Nat Rev Neurosci 14:609–625.  https://doi.org/10.1038/nrn3381 CrossRefPubMedGoogle Scholar
  11. 11.
    Tuominen L, Tuulari J, Karlsson H et al (2015) Aberrant mesolimbic dopamine–opiate interaction in obesity. Neuroimage 122:80–86.  https://doi.org/10.1016/j.neuroimage.2015.08.001 CrossRefPubMedGoogle Scholar
  12. 12.
    Wu C, Garamszegi S, Xie X, Mash D (2017) Altered dopamine synaptic markers in postmortem brain of obese subjects. Front Hum Neurosci 11:386.  https://doi.org/10.3389/fnhum.2017.00386 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Furst T, Connors M, Bisogni C et al (1996) Food choice: a conceptual model of the process. Appetite 26:47–265.  https://doi.org/10.1006/appe.1996.0019 CrossRefGoogle Scholar
  14. 14.
    INEGI (2013) Encuesta Nacional de Gastos de los Hogares, Catálogo de bienes y servicios de consumo. http://www.beta.inegi.org.mx/proyectos/enchogares/regulares/engasto/2013. Accessed 8 June 2018
  15. 15.
    Costell E, Tárrega A, Bayarri S (2010) Food acceptance: the role of consumer perception and attitudes. Chem Percept 3:42–50.  https://doi.org/10.1007/s12078-009-9057-1 CrossRefGoogle Scholar
  16. 16.
    Cooke L, Wardle J (2005) Age and gender differences in children’s food preferences. Br J Nutr 93:741–746.  https://doi.org/10.1079/BJN20051389 CrossRefPubMedGoogle Scholar
  17. 17.
    Rada P, Avena N, Hoebel B (2005) Daily bingeing on sugar repeatedly releases dopamine in the accumbens shell. Neuroscience 134:737–744CrossRefPubMedGoogle Scholar
  18. 18.
    Fritz B, Munoz B, Yin F et al (2018) A high-fat, high-sugar ‘Western’ diet alters dorsal striatal glutamate, opioid, and dopamine transmission in mice. Neuroscience 72:1–15.  https://doi.org/10.1016/j.neuroscience.2017.12.036 CrossRefGoogle Scholar
  19. 19.
    Small D, Jones-Gotman M, Dagher A (2003) Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage 19:1709–1715.  https://doi.org/10.1016/S1053-8119(03)00253-2 CrossRefPubMedGoogle Scholar
  20. 20.
    van der Laan L, de Ridder D, Viergever M, Smeets P (2014) Activation in inhibitory brain regions during food choice correlates with temptation strength and self-regulatory success in weight-concerned women. Front Neurosci 8:1–10.  https://doi.org/10.3389/fnins.2014.00308 CrossRefGoogle Scholar
  21. 21.
    Curtis C, Davis C (2014) A qualitative study of binge eating and obesity from an addiction perspective. Eat Disord 22:19–32.  https://doi.org/10.1080/10640266.2014.857515 CrossRefPubMedGoogle Scholar
  22. 22.
    De Cock N, Van Lippevelde W, Vervoort L et al (2016) Sensitivity to reward is associated with snack and sugar-sweetened beverage consumption in adolescents. Eur J Nutr 55:1623–1632.  https://doi.org/10.1007/s00394-015-0981-3 CrossRefPubMedGoogle Scholar
  23. 23.
    Oswald K, Murdaugh D, King V, Boggiano M (2011) Motivation for palatable food despite consequences in an animal model of binge eating. Int J Eat Disord 44:203–211.  https://doi.org/10.1002/eat.20808 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hernández-Avila M (2016) Encuesta Nacional de Salud y Nutrición de Medio Camino 2016: Resultados ponderados. http://promocion.salud.gob.mx/dgps/descargas1/doctos_2016/ensanut_mc_2016-310oct.pdf. Accessed 8 June 2018
  25. 25.
    Aguilar-Salinas C, Gomez-Perez F, Rull J et al (2010) Prevalence of dyslipidemias in the Mexican National Health and Nutrition Survey 2006. Salud Publ Mex 52:44–53. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0036-36342010000700008&lng= es&tlng=. Accessed 8 June 2018
  26. 26.
    Panduro A, Ramos-Lopez O, Campollo O et al (2017) High frequency of the DRD2/ANKK1 A1 allele in Mexican Native Amerindians and Mestizos and its association with alcohol consumption. Drug Alcohol Depend 172:66–72.  https://doi.org/10.1016/j.drugalcdep.2016.12.006 CrossRefPubMedGoogle Scholar
  27. 27.
    Rangel-Villalobos H, Munoz-Valle J, Gonzalez-Martin A et al (2008) Genetic admixture, relatedness, and structure patterns among Mexican populations revealed by the Y-chromosome. Am J Phys Anthropol 135:448–461.  https://doi.org/10.1002/ajpa.20765 CrossRefPubMedGoogle Scholar
  28. 28.
    Martinez-Cortes G, Salazar-Flores J, Fernández-Rodríguez L et al (2012) Admixture and population structure in Mexican-Mestizos based on paternal lineages. J Hum Genet 57:568–574.  https://doi.org/10.1038/jhg.2012.67 CrossRefPubMedGoogle Scholar
  29. 29.
    Rubi-Castellanos R, Martínez-Cortés G, Muñoz-Valle J et al (2009) Pre-Hispanic Mesoamerican demography approximates the present-day ancestry of Mestizos throughout the territory of Mexico. Am J Phys Anthropol 139:284–294.  https://doi.org/10.1002/ajpa.20980 CrossRefPubMedGoogle Scholar
  30. 30.
    World Medical Association Declaration of Helsinki (2013) Ethical principles for medical research involving human subjects. JAMA 10:2191–2194.  https://doi.org/10.1001/jama.2013.281053 CrossRefGoogle Scholar
  31. 31.
    Ramos-Lopez O, Roman S, Martinez-Lopez E et al (2015) Association of a novel TAS2R38 haplotype with alcohol intake among Mexican-Mestizo population. Ann Hepatol 14:729–734CrossRefPubMedGoogle Scholar
  32. 32.
    World Health Organization (2000) Obesity: preventing and managing the global epidemic. Report of a WHO consultation. Technical report series no. 894. http://www.who.int/nutrition/publications/obesity/WHO_TRS_894/en/. Accessed 8 June 2018
  33. 33.
    Matthews D, Hosker J, Rudenski A, Naylor B (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419.  https://doi.org/10.1007/BF00280883 CrossRefGoogle Scholar
  34. 34.
    Summary of Revisions: Standards of Medical Care in Diabetes (2018) Diabetes Care 41:S4–S6.  https://doi.org/10.2337/dc18-Srev01 CrossRefGoogle Scholar
  35. 35.
    Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report (2002). Circulation 106:3143–3421. http://circ.ahajournals.org/content/106/25/3143.long. Accessed 8 June 2018
  36. 36.
    Miller S, Dykes D, Polesky H (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215.  https://doi.org/10.1093/nar/16.3.1215 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Aguilar-Barojas S (2005) Fórmulas para el cálculo de la muestra en investigaciones de salud. Salud en Tabasco 11:333–338. http://www.redalyc.org/articulo.oa?id=48711206. Accessed 8 June 2018
  38. 38.
    Panduro A, Rivera-Iniguez I, Sepulveda-Villegas M, Roman S (2017) Genes, emotions and gut microbiota: the next frontier for the gastroenterologist. World J Gastroenterol 23:3030–3042.  https://doi.org/10.3748/wjg.v23.i17.3030 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lek FY, Ong HH, Say YH (2018) Association of dopamine receptor D2 gene (DRD2) TaqI polymorphisms with eating behaviors and obesity among Chinese and Indian Malaysian university students. Asia Pac J Clin Nutr 2:707–717.  https://doi.org/10.6133/apjcn.092017.09 CrossRefGoogle Scholar
  40. 40.
    Yeh J, Trabg A, Henning S et al (2016) Food cravings, food addiction, and a dopamine-resistant (DRD2 A1) receptor polymorphism in Asian American college students. Asia Pac J Clin Nutr 25:424–429.  https://doi.org/10.6133/apjcn.102015.05 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    van Strien T, Snoek HM, van der Zwaluw CS, Engels RC (2010) Parental control and the dopamine D2 receptor gene (DRD2) interaction on emotional eating in adolescence. Appetite 54:255–261.  https://doi.org/10.1016/j.appet.2009.11.006 CrossRefPubMedGoogle Scholar
  42. 42.
    Chen A, Blum K, Chen T et al (2012) Correlation of the TaqI dopamine D2 receptor gene and percent body fat in obese and screened control subjects: a preliminary report. Food Funct 3:40–48.  https://doi.org/10.1039/c1fo10089k CrossRefPubMedGoogle Scholar
  43. 43.
    Carpenter C, Wong A, Li Z, Noble E, Heber D (2013) Association of dopamine D2 receptor and leptin receptor genes with clinically severe obesity. Obesity (Silver Spring) 21:467–473.  https://doi.org/10.1002/oby.20202 CrossRefGoogle Scholar
  44. 44.
    Benton D, Young H (2016) A meta-analysis of the relationship between brain dopamine receptors and obesity: a matter of changes in behavior rather than food addiction? Int J Obes (Lond) 40:S12–S21.  https://doi.org/10.1038/ijo.2016.9 CrossRefGoogle Scholar
  45. 45.
    Hardman C, Rogers P, Timpson N, Munafo M (2014) Lack of association between DRD2 and OPRM1 genotypes and adiposity. Int J Obes (Lond) 38:730–736.  https://doi.org/10.1038/ijo.2013.144 CrossRefGoogle Scholar
  46. 46.
    Ramos-Lopez O, Martinez-Lopez E, Roman S et al (2015) Genetic, metabolic and environmental factors involved in the development of liver cirrhosis in Mexico. World J Gastroenterol 21:11552–11566.  https://doi.org/10.3748/wjg.v21.i41.11552 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Barrera-Cruz A, Rodriguez-Gonzalez A, Molina-Ayala A (2013) The current state of obesity in Mexico. Rev Med Inst Mex Seguro Soc 51:92–299. http://revistamedica.imss.gob.mx/editorial/index.php/revista_medica/article/view/968/1591. Accessed 8 June 2018
  48. 48.
    Gómez A, García V, Estrada M (2005) La alimentación en México: enfoques y visión a futuro. Estudios Sociales. Rev Investig Cient 13:7–34. http://www.redalyc.org/articulo.oa?id=41702501. Accessed 8 June 2018
  49. 49.
    Cameron J, Riou M, Tesson F et al (2013) The TaqIA RFLP is associated with attenuated intervention-induced body weight loss and increased carbohydrate intake in post-menopausal obese women. Appetite 60:111–116.  https://doi.org/10.1016/j.appet.2012.09.010 CrossRefPubMedGoogle Scholar
  50. 50.
    Roth C, Hinney A, Schur E et al (2013) Association analyses for dopamine receptor gene polymorphisms and weight status in a longitudinal analysis in obese children before and after lifestyle intervention. BMC Pediatr 13:197.  https://doi.org/10.1186/1471-2431-13-197 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Epstein L, Temple J, Neaderhiser B et al (2007) Food reinforcement, the dopamine D2 receptor genotype, and energy intake in obese and nonobese humans. Behav Neurosci 121:877–886.  https://doi.org/10.1037/0735-7044.121.5.877 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ramos-Lopez O, Panduro A, Martinez-Lopez E, Roman S (2016) Sweet taste receptor TAS1R2 polymorphism (Val191Val) is associated with a higher carbohydrate intake and hypertriglyceridemia among the population of West Mexico. Nutrients 8:101.  https://doi.org/10.3390/nu8020101 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ramos-Lopez O, Panduro A, Martinez-Lopez E et al (2015) Genetic variant in the CD36 gene (rs1761667) is associated with higher fat intake and high serum cholesterol among the population of West Mexico. J Nutr Food Sci 5:353.  https://doi.org/10.4172/2155-9600.1000353 CrossRefGoogle Scholar
  54. 54.
    Obregon A, Valladares M, Goldfield G (2017) Association of the dopamine D2 receptor rs1800497 polymorphism and eating behavior in Chilean children. Nutrition 35:139–145.  https://doi.org/10.1016/j.nut.2016.11.005 CrossRefPubMedGoogle Scholar
  55. 55.
    Fattore L, Melis M, Fadda P, Fratta W (2014) Sex differences in addictive disorders. Front Neuroendocrinol 35:272–284.  https://doi.org/10.1016/j.yfrne.2014.04.003 CrossRefPubMedGoogle Scholar
  56. 56.
    Wardle J, Haase A, Steptoe A et al (2004) Gender differences in food choice: the contribution of health beliefs and dieting. Ann Behav Med 27:107–116.  https://doi.org/10.1207/s15324796amb2702_5 CrossRefPubMedGoogle Scholar
  57. 57.
    Scott-Sheldon L, Stroud L (2018) Preferences and perceptions of flavored hookah tobacco among US women. Am J Health Behav 42:7–46.  https://doi.org/10.5993/AJHB.42.3.4 CrossRefGoogle Scholar
  58. 58.
    Hernández-Ruiz Z, Rodríguez-Ramírez S, Hernández-Cordero S et al (2018) Dietary patterns andmetabolic syndrome components in women with excess weight 18 to 45 years old. Salud Publ Mex 60:58–165.  https://doi.org/10.21149/8847 CrossRefGoogle Scholar
  59. 59.
    Dos Santos-Junior A, Henriques T, de Mello M et al (2016) Pharmacogenetics of risperidone and cardiovascular risk in children and adolescents. Int J Endocrinol.  https://doi.org/10.1155/2016/5872423 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Hernandez-Nazara Z, Ruiz-Madrigal B, Martinez-Lopez E et al (2008) Association of the epsilon 2 allele of APOE gene to hypertriglyceridemia and to early-onset alcoholic cirrhosis. Alcohol Clin Exp Res 32:559–566.  https://doi.org/10.1111/j.1530-0277.2007.00607.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Molecular Biology in MedicineCivil Hospital of Guadalajara, “Fray Antonio Alcalde”GuadalajaraMexico
  2. 2.Health Sciences CenterUniversity of GuadalajaraGuadalajaraMexico
  3. 3.Psychiatry ServiceCivil Hospital of Guadalajara, “Fray Antonio Alcalde”GuadalajaraMexico

Personalised recommendations