A systematic review of studies on the faecal microbiota in anorexia nervosa: future research may need to include microbiota from the small intestine

  • Hanna Ferløv Schwensen
  • Carol Kan
  • Janet Treasure
  • Niels Høiby
  • Magnus SjögrenEmail author



Anorexia nervosa (AN) is a poorly understood and often chronic condition. Deviations in the gut microbiota have been reported to influence the gut–brain axis in other disorders. Therefore, if present in AN, it may impact on symptoms and illness progression. A review of the gut microbiota studies in AN is presented.


A literature search on PubMed yielded 27 articles; 14 were selected and based on relevance, 9 articles were included. The findings were interpreted in the larger context of preclinical research and clinical observations.


8 out of 9 included studies analysed microbiota from faeces samples, while the last analysed a protein in plasma produced by the gut. Two studies were longitudinal and included an intervention (i.e., weight restoration), five were cross-sectional, one was a case report, and the last was a case series consisting of three cases. Deviations in abundance, diversity, and microbial composition of the faecal microbiota in AN were found.


There are currently only a few studies on the gut microbiota in AN, all done on faeces samples, and not all describe the microbiota at the species level extensively. The Archaeon Methanobrevibacter smithii was increased in participants with a BMI < 25 in one study and specifically in AN patients in three studies. Methanobrevibacter smithii may, if detected, be a benchmark biomarker for future studies. We propose that microbiota samples could also be collected from the small intestine, where a major exchange of nutrients takes place and where the microbiota may have a biological impact on AN.


Anorexia nervosa Faeces Microbiota Species Biomarker 



We are thankful to Psychiatric Center Ballerup and the Capitol Region of Denmark, for providing support for this study.


No funding was received in this study.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, no formal consent is required.


  1. 1.
    Keshaviah A, Edkins K, Hastings ER, Krishna M, Franko DL, Herzog DB, Thomas JJ, Murray HB, Eddy KT (2014) Re-examining premature mortality in anorexia nervosa: a meta-analysis redux. Compr Psychiatry 55(8):1773–1784. CrossRefPubMedGoogle Scholar
  2. 2.
    Steinhausen HC (2009) Outcome of eating disorders. Child Adolesc Psychiatr Clin N Am 18(1):225–242. CrossRefPubMedGoogle Scholar
  3. 3.
    Quigley EMM (2013) Gut bacteria in health and disease. Gastroenterol Hepatol (N Y) 9(9):560–569Google Scholar
  4. 4.
    Claesson MJ, O’Sullivan O, Wang Q, Nikkila J, Marchesi JR, Smidt H, de Vos WM, Ross RP, O’Toole PW (2009) Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS One 4(8):e6669. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Meta HITC., Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sudo N, Sawamura S, Tanaka K, Aiba Y, Kubo C, Koga Y (1997) The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol 159(4):1739–1745PubMedGoogle Scholar
  7. 7.
    Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361(9356):512–519. CrossRefPubMedGoogle Scholar
  8. 8.
    Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, Kubo C, Koga Y (2004) Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J Physiol 558(Pt 1):263–275. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, Dinan TG, Cryan JF (2013) The microbiome–gut–brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18(6):666–673. CrossRefPubMedGoogle Scholar
  10. 10.
    Diaz Heijtz R, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 108(7):3047–3052. CrossRefPubMedGoogle Scholar
  11. 11.
    Cryan JF, O’Mahony SM (2011) The microbiome–gut–brain axis: from bowel to behavior. Neurogastroenterol Motil 23(3):187–192. CrossRefPubMedGoogle Scholar
  12. 12.
    Rogers GB, Keating DJ, Young RL, Wong ML, Licinio J, Wesselingh S (2016) From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol Psychiatry 21(6):738–748. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Godart NT, Flament MF, Lecrubier Y, Jeammet P (2000) Anxiety disorders in anorexia nervosa and bulimia nervosa: co-morbidity and chronology of appearance. Eur Psychiatry 15(1):38–45CrossRefGoogle Scholar
  14. 14.
    Fernandez-Aranda F, Pinheiro AP, Tozzi F, Thornton LM, Fichter MM, Halmi KA, Kaplan AS, Klump KL, Strober M, Woodside DB, Crow S, Mitchell J, Rotondo A, Keel P, Plotnicov KH, Berrettini WH, Kaye WH, Crawford SF, Johnson C, Brandt H, La Via M, Bulik CM (2007) Symptom profile of major depressive disorder in women with eating disorders. Aust N Z J Psychiatry 41(1):24–31. CrossRefPubMedGoogle Scholar
  15. 15.
    Kask J, Ekselius L, Brandt L, Kollia N, Ekbom A, Papadopoulos FC (2016) Mortality in women with anorexia nervosa: the role of comorbid psychiatric disorders. Psychosom Med. CrossRefPubMedGoogle Scholar
  16. 16.
    Flint HJ (2011) Obesity and the gut microbiota. J Clin Gastroenterol 45(Suppl):S128–S132. CrossRefGoogle Scholar
  17. 17.
    Cox LM, Blaser MJ (2013) Pathways in microbe-induced obesity. Cell Metab 17(6):883–894. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Aguirre M, Jonkers DM, Troost FJ, Roeselers G, Venema K (2014) In vitro characterization of the impact of different substrates on metabolite production, energy extraction and composition of gut microbiota from lean and obese subjects. PLoS One 9(11):e113864. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457(7228):480–484. CrossRefPubMedGoogle Scholar
  20. 20.
    Jesus P, Ouelaa W, Francois M, Riachy L, Guerin C, Aziz M, Do Rego JC, Dechelotte P, Fetissov SO, Coeffier M (2014) Alteration of intestinal barrier function during activity-based anorexia in mice. Clin Nutr 33(6):1046–1053. CrossRefPubMedGoogle Scholar
  21. 21.
    Pals KL, Chang RT, Ryan AJ, Gisolfi CV (1997) Effect of running intensity on intestinal permeability. J Appl Physiol (1985) 82(2):571–576CrossRefGoogle Scholar
  22. 22.
    Monteleone P, Carratu R, Carteni M, Generoso M, Lamberti M, Magistris LD, Brambilla F, Colurcio B, Secondulfo M, Maj M (2004) Intestinal permeability is decreased in anorexia nervosa. Mol Psychiatry 9(1):76–80. CrossRefPubMedGoogle Scholar
  23. 23.
    Raevuori A, Haukka J, Vaarala O, Suvisaari JM, Gissler M, Grainger M, Linna MS, Suokas JT (2014) The increased risk for autoimmune diseases in patients with eating disorders. PLoS One 9(8):e104845. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Devkota S, Wang Y, Musch MW, Leone V, Fehlner-Peach H, Nadimpalli A, Antonopoulos DA, Jabri B, Chang EB (2012) Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 487(7405):104–108. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zoetendal EG, von Wright A, Vilpponen-Salmela T, Ben-Amor K, Akkermans AD, de Vos WM (2002) Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol 68(7):3401–3407CrossRefGoogle Scholar
  26. 26.
    Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Carroll IM, Ringel-Kulka T, Keku TO, Chang YH, Packey CD, Sartor RB, Ringel Y (2011) Molecular analysis of the luminal- and mucosal-associated intestinal microbiota in diarrhea-predominant irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 301(5):G799–G807. CrossRefGoogle Scholar
  28. 28.
    Durban A, Abellan JJ, Jimenez-Hernandez N, Ponce M, Ponce J, Sala T, D’Auria G, Latorre A, Moya A (2011) Assessing gut microbial diversity from feces and rectal mucosa. Microbial Ecol 61(1):123–133. CrossRefGoogle Scholar
  29. 29.
    Booijink CC, El-Aidy S, Rajilic-Stojanovic M, Heilig HG, Troost FJ, Smidt H, Kleerebezem M, De Vos WM, Zoetendal EG (2010) High temporal and inter-individual variation detected in the human ileal microbiota. Environ Microbiol 12(12):3213–3227. CrossRefPubMedGoogle Scholar
  30. 30.
    Hayashi H, Takahashi R, Nishi T, Sakamoto M, Benno Y (2005) Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J Med Microbiol 54(Pt 11):1093–1101. CrossRefPubMedGoogle Scholar
  31. 31.
    Wang M, Ahrne S, Jeppsson B, Molin G (2005) Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol 54(2):219–231. CrossRefPubMedGoogle Scholar
  32. 32.
    Morkl S, Lackner S, Muller W, Gorkiewicz G, Kashofer K, Oberascher A, Painold A, Holl A, Holzer P, Meinitzer A, Mangge H, Holasek S (2017) Gut microbiota and body composition in anorexia nervosa inpatients in comparison to athletes, overweight, obese, and normal weight controls. Int J Eat Disord 50(12):1421–1431. CrossRefPubMedGoogle Scholar
  33. 33.
    Kleiman SC, Watson HJ, Bulik-Sullivan EC, Huh EY, Tarantino LM, Bulik CM, Carroll IM (2015) The intestinal microbiota in acute anorexia nervosa and during renourishment: relationship to depression, anxiety, and eating disorder psychopathology. Psychosom Med 77(9):969–981. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Mack I, Cuntz U, Gramer C, Niedermaier S, Pohl C, Schwiertz A, Zimmermann K, Zipfel S, Enck P, Penders J (2016) Weight gain in anorexia nervosa does not ameliorate the faecal microbiota, branched chain fatty acid profiles, and gastrointestinal complaints. Sci Rep 6:26752. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Armougom F, Henry M, Vialettes B, Raccah D, Raoult D (2009) Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS One 4(9):e7125. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Million M, Angelakis E, Maraninchi M, Henry M, Giorgi R, Valero R, Vialettes B, Raoult D (2013) Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. Int J Obes (Lond) 37(11):1460–1466. CrossRefGoogle Scholar
  37. 37.
    Morita C, Tsuji H, Hata T, Gondo M, Takakura S, Kawai K, Yoshihara K, Ogata K, Nomoto K, Miyazaki K, Sudo N (2015) Gut dysbiosis in patients with anorexia nervosa. PLoS One 10(12):e0145274. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Borgo F, Riva A, Benetti A, Casiraghi MC, Bertelli S, Garbossa S, Anselmetti S, Scarone S, Pontiroli AE, Morace G, Borghi E (2017) Microbiota in anorexia nervosa: the triangle between bacterial species, metabolites and psychological tests. PLoS One 12(6):e0179739. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Breton J, Legrand R, Akkermann K, Jarv A, Harro J, Dechelotte P, Fetissov SO (2016) Elevated plasma concentrations of bacterial ClpB protein in patients with eating disorders. Int J Eat Disord 49(8):805–808. CrossRefPubMedGoogle Scholar
  40. 40.
    Pfleiderer A, Lagier JC, Armougom F, Robert C, Vialettes B, Raoult D (2013) Culturomics identified 11 new bacterial species from a single anorexia nervosa stool sample. Eur J Clin Microbiol Infect Dis 32(11):1471–1481. CrossRefPubMedGoogle Scholar
  41. 41.
    Kleiman SC, Glenny EM, Bulik-Sullivan EC, Huh EY, Tsilimigras MCB, Fodor AA, Bulik CM, Carroll IM (2017) Daily changes in composition and diversity of the intestinal microbiota in patients with anorexia nervosa: a series of three cases. Eur Eat Disord Rev J Eat Disord Assoc 25(5):423–427. CrossRefGoogle Scholar
  42. 42.
    Kishi T, Elmquist JK (2005) Body weight is regulated by the brain: a link between feeding and emotion. Mol Psychiatry 10(2):132–146. CrossRefPubMedGoogle Scholar
  43. 43.
    Van Wymelbeke V, Brondel L, Marcel Brun J, Rigaud D (2004) Factors associated with the increase in resting energy expenditure during refeeding in malnourished anorexia nervosa patients. Am J Clin Nutr 80(6):1469–1477CrossRefGoogle Scholar
  44. 44.
    Kaye WH, Gwirtsman HE, Obarzanek E, George DT (1988) Relative importance of calorie intake needed to gain weight and level of physical activity in anorexia nervosa. Am J Clin Nutr 47(6):989–994CrossRefGoogle Scholar
  45. 45.
    Moukaddem M, Boulier A, Apfelbaum M, Rigaud D (1997) Increase in diet-induced thermogenesis at the start of refeeding in severely malnourished anorexia nervosa patients. Am J Clin Nutr 66(1):133–140CrossRefGoogle Scholar
  46. 46.
    Samuel BS, Gordon JI (2006) A humanized gnotobiotic mouse model of host–archaeal–bacterial mutualism. Proc Natl Acad Sci USA 103(26):10011–10016. CrossRefPubMedGoogle Scholar
  47. 47.
    Gottlieb K, Wacher V, Sliman J, Pimentel M (2016) Review article: inhibition of methanogenic archaea by statins as a targeted management strategy for constipation and related disorders. Aliment Pharmacol Ther 43(2):197–212. CrossRefPubMedGoogle Scholar
  48. 48.
    Triantafyllou K, Chang C, Pimentel M (2014) Methanogens, methane and gastrointestinal motility. J Neurogastroenterol Motil 20(1):31–40. CrossRefPubMedGoogle Scholar
  49. 49.
    Lapage SP, Sneath PHA, Lessel EF et al (1992) International code of nomenclature of bacteria: bacteriological code. ASM Press, Washington (DC)Google Scholar
  50. 50.
    Claesson MJ, Clooney AG, O’Toole PW (2017) A clinician’s guide to microbiome analysis. Nat Rev Gastroenterol Hepatol. CrossRefPubMedGoogle Scholar
  51. 51.
    Johansson ME, Hansson GC (2011) Microbiology. Keeping bacteria at a distance. Science 334(6053):182–183. CrossRefPubMedGoogle Scholar
  52. 52.
    Belkaid Y, Grainger J (2013) Immunology. Mucus coat, a dress code for tolerance. Science 342(6157):432–433. CrossRefPubMedGoogle Scholar
  53. 53.
    Zoetendal EG, Raes J, van den Bogert B, Arumugam M, Booijink CC, Troost FJ, Bork P, Wels M, de Vos WM, Kleerebezem M (2012) The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J 6(7):1415–1426. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Vandeputte D, Falony G, Vieira-Silva S, Tito RY, Joossens M, Raes J (2016) Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 65(1):57–62. CrossRefPubMedGoogle Scholar
  55. 55.
    Finegold SM, Sutter VL, Boyle JD, Shimada K (1970) The normal flora of ileostomy and transverse colostomy effluents. J Infect Dis 122(5):376–381CrossRefGoogle Scholar
  56. 56.
    Rangel I, Sundin J, Fuentes S, Repsilber D, de Vos WM, Brummer RJ (2015) The relationship between faecal-associated and mucosal-associated microbiota in irritable bowel syndrome patients and healthy subjects. Aliment Pharmacol Ther 42(10):1211–1221. CrossRefPubMedGoogle Scholar
  57. 57.
    Rooks MG, Garrett WS (2016) Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16(6):341–352. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Cebra JJ (1999) Influences of microbiota on intestinal immune system development. Am J Clin Nutr 69(5):1046 s-1051 sCrossRefGoogle Scholar
  59. 59.
    Singeap AM, Stanciu C, Trifan A (2016) Capsule endoscopy: the road ahead. World J Gastroenterol 22(1):369–378. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Neufeld KA, Foster JA (2009) Effects of gut microbiota on the brain: implications for psychiatry. J Psychiatry Neurosci 34(3):230–231PubMedPubMedCentralGoogle Scholar
  61. 61.
    O’Mahony SM, Marchesi JR, Scully P, Codling C, Ceolho AM, Quigley EM, Cryan JF, Dinan TG (2009) Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry 65(3):263–267. CrossRefPubMedGoogle Scholar
  62. 62.
    Whitehead WE, Palsson O, Jones KR (2002) Systematic review of the comorbidity of irritable bowel syndrome with other disorders: what are the causes and implications? Gastroenterology 122(4):1140–1156CrossRefGoogle Scholar
  63. 63.
    Grenham S, Clarke G, Cryan JF, Dinan TG (2011) Brain–gut–microbe communication in health and disease. Front Physiol 2:94. CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13(10):701–712. CrossRefGoogle Scholar
  65. 65.
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563. CrossRefPubMedGoogle Scholar
  66. 66.
    Leibbrand R, Cuntz U, Hiller W (2002) Assessment of functional gastrointestinal disorders using the Gastro-Questionnaire. Int J Behav Med 9(2):155–172CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mental Health Center BallerupBallerupDenmark
  2. 2.Institute of Psychiatry, King’s College LondonLondonUK
  3. 3.Institute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUK
  4. 4.Department Clinical Microbiology, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
  5. 5.Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations