Directly measured free 25-hydroxy vitamin D levels show no evidence of vitamin D deficiency in young Swedish women with anorexia nervosa

  • Martin Carlsson
  • Lars Brudin
  • Pär WanbyEmail author
Original Article



Anorexia nervosa (AN) is an eating disorder characterized by low fat mass complicated by osteoporosis. The role of circulating vitamin D in the development of bone loss in AN is unclear. Fat mass is known to be inversely associated with vitamin D levels measured as serum levels of total, protein-bound 25-hydroxyvitamin D, but the importance of directly measured, free levels of 25(OH)D has not been determined in AN. The aim of this study was to investigate vitamin D status, as assessed by serum concentrations of total and free serum 25(OH)D in patients with AN and healthy controls.


In female AN patients (n = 20), and healthy female controls (n = 78), total 25(OH)D was measured by LC–MS/MS, and free 25(OH)D with ELISA. In patients with AN bone mineral density (BMD) was determined with DEXA.


There were no differences between patients and controls in total or free S-25(OH)D levels (80 ± 31 vs 72 ± 18 nmol/L, and 6.5 ± 2.5 vs 5.6 ± 1.8 pg/ml, respectively), and no association to BMD was found. In the entire group of patients and controls, both vitamin D parameters correlated with BMI, leptin, and PTH.


The current study did not demonstrate a vitamin D deficiency in patients with AN and our data does not support vitamin D deficiency as a contributing factor to bone loss in AN. Instead, we observed a trend toward higher vitamin D levels in AN subjects compared to controls. Measurement of free vitamin D levels did not contribute to additional information.


Osteoporosis Vitamin D Adipose tissue Anorexia nervosa Leptin Parathyroid hormone 



This work was supported by a grant from the Medical Research Council of Southeast Sweden (FORSS).We are also indebted to nurse Susanne Petersen and biomedical scientist Siv-Pingh Von, for their excellent assistance.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by the Regional Ethical Committee, Linköping, Sweden.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Soyka LA, Grinspoon S, Levitsky LL, Herzog DB, Klibanski A (1999) The effects of anorexia nervosa on bone metabolism in female adolescents. J Clin Endocrinol Metab 84(12):4489–4496PubMedGoogle Scholar
  2. 2.
    Fonseca VA, D’Souza V, Houlder S, Thomas M, Wakeling A, Dandona P (1988) Vitamin D deficiency and low osteocalcin concentrations in anorexia nervosa. J Clin Pathol 41(2):195–197CrossRefGoogle Scholar
  3. 3.
    Olmos JM, Riancho JA, Amado JA, Freijanes J, Menéndez-Arango J, González-Macías J (1991) Vitamin D metabolism and serum binding proteins in anorexia nervosa. Bone 12(1):43–46CrossRefGoogle Scholar
  4. 4.
    Aarskog D, Aksnes L, Markestad T, Trygstad O (1986) Plasma concentrations of vitamin D metabolites in pubertal girls with anorexia nervosa. Acta Endocrinol Suppl (Copenh) 279:458–467CrossRefGoogle Scholar
  5. 5.
    Van Binsbergen CJ, Odink J, Van den Berg H, Koppeschaar H, Coelingh Bennink HJ (1988) Nutritional status in anorexia nervosa: clinical chemistry, vitamins, iron and zinc. Eur J Clin Nutr 42(11):929–937PubMedGoogle Scholar
  6. 6.
    Grinspoon S, Thomas E, Pitts S, Gross E, Mickley D, Miller K, Herzog D, Klibanski A (2000) Prevalence and predictive factors for regional osteopenia in women with anorexia nervosa. Ann Intern Med 133(10):790–794CrossRefGoogle Scholar
  7. 7.
    Haagensen AL, Feldman HA, Ringelheim J, Gordon CM (2008) Low prevalence of vitamin D deficiency among adolescents with anorexia nervosa. Osteoporos Int 19(3):289–294. doi: 10.1007/s00198-007-0476-z CrossRefPubMedGoogle Scholar
  8. 8.
    Svedlund A, Pettersson C, Tubic B, Magnusson P, Swolin-Eide D (2016) Vitamin D status in young Swedish women with anorexia nervosa during intensive weight gain therapy. Eur J Nutr. doi: 10.1007/s00394-016-1244-7 (Epub ahead of print)
  9. 9.
    Veronese N, Solmi M, Rizza W, Manzato E, Sergi G, Santonastaso P, Caregaro L, Favaro A, Correll CU (2015) Vitamin D status in anorexia nervosa: a meta-analysis. Int J Eat Disord 48(7):803–813. doi: 10.1002/eat.22370 CrossRefPubMedGoogle Scholar
  10. 10.
    Chun RF, Peercy BE, Orwoll ES, Nielson CM, Adams JS, Hewison M (2014) Vitamin D and DBP: the free hormone hypothesis revisited. J Steroid Biochem Mol Biol 144:132–137. doi: 10.1016/j.jsbmb.2013.09.012 CrossRefPubMedGoogle Scholar
  11. 11.
    Bhan I, Powe CE, Berg AH, Ankers E, Wenger JB, Karumanchi SA, Thadhani RI (2012) Bioavailable vitamin D is more tightly linked to mineral metabolism than total vitamin D in incident hemodialysis patients. Kidney Int 82(1):84–89. doi: 10.1038/ki.2012.19 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Powe CE, Ricciardi C, Berg AH, Erdenesanaa D, Collerone G, Ankers E, Wenger J, Karumanchi SA, Thadhani R, Bhan I (2011) Vitamin D-binding protein modifies the vitamin D-bone mineral density relationship. J Bone Miner Res 26(7):1609–1616. doi: 10.1002/jbmr.387 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mendel CM (1989) The free hormone hypothesis: a physiologically based mathematical model. Endocr Rev 10(3):232–274. doi: 10.1210/edrv-10-3-232 CrossRefPubMedGoogle Scholar
  14. 14.
    Cheng S, Massaro JM, Fox CS, Larson MG, Keyes MJ, McCabe EL, Robins SJ et al (2010) Adiposity, cardiometabolic risk, and vitamin D status: the Framingham Heart Study. Diabetes 59(1):242–248. doi: 10.2337/db09-1011 CrossRefPubMedGoogle Scholar
  15. 15.
    Lagunova Z, Porojnicu AC, Lindberg F, Hexeberg S, Moan J (2009) The dependency of vitamin D status on body mass index, gender, age and season. Anticancer Res 29(9):3713–3720PubMedGoogle Scholar
  16. 16.
    Shimizu H, Shimomura Y, Hayashi R, Ohtani K, Sato N, Futawatari T, Mori M (1997) Serum leptin concentration is associated with total body fat mass, but not abdominal fat distribution. Int J Obes Relat Metab Disord 21(7):536–541CrossRefGoogle Scholar
  17. 17.
    Shah NR, Braverman ER (2012) Measuring adiposity in patients: the utility of body mass index (BMI), percent body fat, and leptin. PLoS One 7(4):e33308. doi: 10.1371/journal.pone.0033308 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chen XX, Yang T (2015) Roles of leptin in bone metabolism and bone diseases. J Bone Miner Metab 33(5):474–485. doi: 10.1007/s00774-014-0569-7 CrossRefPubMedGoogle Scholar
  19. 19.
    Carlsson M, Nilsson I, Brudin L, Von SP, Wanby P (2017) Erythrocyte fatty acid composition does not influence levels of free, bioavailable, and total 25-hydroxy vitamin D. Scand J Clin Lab Invest 77(1):45–52. doi: 10.1080/00365513.2016.1258724 CrossRefPubMedGoogle Scholar
  20. 20.
    Hind K, Oldroyd B, Truscott JG (2010) In vivo precision of the GE Lunar iDXA densitometer for the measurement of total-body, lumbar spine, and femoral bone mineral density in adults. J Clin Densitom 13(4):413–417. doi: 10.1016/j.jocd.2010.06.002 CrossRefPubMedGoogle Scholar
  21. 21.
    Tian XQ, Chen TC, Matsuoka LY, Wortsman J, Holick MF (1993) Kinetic and thermodynamic studies of the conversion of previtamin D3 to vitamin D3 in human skin. J Biol Chem 268(20):14888–14892PubMedGoogle Scholar
  22. 22.
    Wacker M, Holick MF (2013) Vitamin D—effects on skeletal and extraskeletal health and the need for supplementation. Nutrients 5(1):111–148. doi: 10.3390/nu5010111 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Rosen CJ, Adams JS, Bikle DD, Black DM, Demay MB, Manson JE, Murad MH, Kovacs CS (2012) The nonskeletal effects of vitamin D: an Endocrine Society scientific statement. Endocr Rev 33(3):456–492. doi: 10.1210/er.2012-1000 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Caprio M, Infante M, Calanchini M, Mammi C, Fabbri A (2017) Vitamin D: not just the bone. Evidence for beneficial pleiotropic extraskeletal effects. Eat Weight Disord 22(1):27–41. doi: 10.1007/s40519-016-0312-6 CrossRefPubMedGoogle Scholar
  25. 25.
    Holick MF (2007) Vitamin D deficiency. N Engl J Med 357(3):266–281. doi: 10.1056/NEJMra070553 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA et al (2011) The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab 96(1):53–58. doi: 10.1210/jc.2010-2704 CrossRefGoogle Scholar
  27. 27.
    Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH (2011) Weaver CM; Endocrine Society. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96(12):1911–1930. doi: 10.1210/jc.2011-0385 CrossRefGoogle Scholar
  28. 28.
    Modan-Moses D, Levy-Shraga Y, Pinhas-Hamiel O, Kochavi B, Enoch-Levy A, Vered I, Stein D (2015) High prevalence of vitamin D deficiency and insufficiency in adolescent inpatients diagnosed with eating disorders. Int J Eat Disord 48(6):607–614. doi: 10.1002/eat.22347 CrossRefPubMedGoogle Scholar
  29. 29.
    Hotta M (2015) High prevalence of vitamin D insufficiency and deficiency among patients with anorexia nervosa in Japan. Osteoporos Int 26(3):1233. doi: 10.1007/s00198-014-2957-1 CrossRefPubMedGoogle Scholar
  30. 30.
    Spedding S (2014) Vitamin D and depression: a systematic review and meta-analysis comparing studies with and without biological flaws. Nutrients 6(4):1501–1518. doi: 10.3390/nu6041501 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Toffanello ED, Sergi G, Veronese N, Perissinotto E, Zambon S, Coin A, Sartori L et al (2014) Serum 25-hydroxyvitamin d and the onset of late-life depressive mood in older men and women: the Pro.V.A. study. J Gerontol A Biol Sci Med Sci 69(12):1554–1561. doi: 10.1093/gerona/glu081 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Umhau JC, George DT, Heaney RP, Lewis MD, Ursano RJ, Heilig M, Hibbeln JR et al (2013) Low vitamin D status and suicide: a case-control study of active duty military service members. PLoS One 8(1):e51543. doi: 10.1371/journal.pone.0051543 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hughes EK, Goldschmidt AB, Labuschagne Z, Loeb KL, Sawyer SM, Le Grange D (2013) Eating disorders with and without comorbid depression and anxiety: similarities and differences in a clinical sample of children and adolescents. Eur Eat Disord Rev 21(5):386–394. doi: 10.1002/erv.2234 CrossRefPubMedGoogle Scholar
  34. 34.
    Aloia J, Mikhail M, Dhaliwal R, Shieh A, Usera G, Stolberg A, Ragolia L et al (2015) Free 25(OH)D and the Vitamin D Paradox in African Americans. J Clin Endocrinol Metab 100(9):3356–3363. doi: 10.1210/JC.2015-2066 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Szabó B, Tabák ÁG, Toldy E, Szekeres L, Szili B, Bakos B, Balla B, et al (2015) The role of serum total and free 25-hydroxyvitamin D and PTH values in defining vitamin D status at the end of winter: a representative survey. J Bone Miner Metab. doi:10.1210/JC.2015-2066 (Epub ahead of print) Google Scholar
  36. 36.
    Altinova AE, Ozkan C, Akturk M, Gulbahar O, Yalcin M, Cakir N, Toruner FB (2016) Vitamin D-binding protein and free vitamin D concentrations in acromegaly. Endocrine 52(2):374–379. doi: 10.1007/s12020-015-0789-1 CrossRefPubMedGoogle Scholar
  37. 37.
    Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF (2000) Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 72(3):690–693CrossRefGoogle Scholar
  38. 38.
    Winston AP (2012) The clinical biochemistry of anorexia nervosa. Ann Clin Biochem 49(Pt 2):132–143. doi: 10.1258/acb.2011.011185 CrossRefPubMedGoogle Scholar
  39. 39.
    Estecha Querol S, Fernandez Alvira JM, Mesana Graffe MI, Nova Rebato E, Marcos Sanchez A, Moreno Aznar LA (2016) Nutrient intake in Spanish adolescents SCOFF high-scorers: the AVENA study. Eat Weight Disord 21(4):589–596. doi: 10.1007/s40519-016-0282-8 CrossRefPubMedGoogle Scholar
  40. 40.
    Chandran JJ, Anderson G, Kennedy A, Kohn M, Clarke S (2015) Subacute combined degeneration of the spinal cord in an adolescent male with avoidant/restrictive food intake disorder: a clinical case report. Int J Eat Disord 48(8):1176–1179. doi: 10.1002/eat.22450 CrossRefPubMedGoogle Scholar
  41. 41.
    Achamrah N, Coeffier M, Rimbert A, Charles J, Folope V, Petit A et al (2017) Micronutrient status in 153 patients with anorexia nervosa. Nutrients. doi: 10.3390/nu9030225 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kobayashi S, Asakura K, Suga H, Sasaki S (2017) Three-generation Study of Women on D, Health Study G. Living status and frequency of eating out-of-home foods in relation to nutritional adequacy in 4017 Japanese female dietetic students aged 18–20 years: a multicenter cross-sectional study. J Epidemiol. doi: 10.1016/ CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Misra M, Klibanski A (2014) Anorexia nervosa and bone. J Endocrinol 221(3):R163–R176. doi: 10.1530/JOE-14-0039 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Misra M, Klibanski A (2014) Endocrine consequences of anorexia nervosa. Lancet Diabetes Endocrinol 2(7):581–592. doi: 10.1016/S2213-8587(13)70180-3 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Idolazzi L, El Ghoch M, Dalle Grave R, Bazzani PV, Calugi S, Fassio S et al (2016) Bone metabolism in patients with anorexia nervosa and amenorrhoea. Eat Weight Disord. doi: 10.1007/s40519-016-0337-x CrossRefPubMedGoogle Scholar
  46. 46.
    Miller KK (2011) Endocrine dysregulation in anorexia nervosa update. J Clin Endocrinol Metab 96(10):2939–2949. doi: 10.1210/jc.2011-1222 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lawson EA, Klibanski A (2008) Endocrine abnormalities in anorexia nervosa. Nat Clin Pract Endocrinol Metab 4(7):407–414. doi: 10.1038/ncpendmet0872 CrossRefPubMedGoogle Scholar
  48. 48.
    Lawson EA, Miller KK, Bredella MA, Phan C, Misra M, Meenaghan E, Rosenblum L, Donoho D, Gupta R, Klibanski A (2010) Hormone predictors of abnormal bone microarchitecture in women with anorexia nervosa. Bone 46(2):458–463. doi: 10.1016/j.bone.2009.09.005 CrossRefPubMedGoogle Scholar
  49. 49.
    Gatti D, El Ghoch M, Viapiana O, Ruocco A, Chignola E, Rossini M, Giollo A, Idolazzi L, Adami S, Dalle Grave R (2015) Strong relationship between vitamin D status and bone mineral density in anorexia nervosa. Bone 78:212–215. doi: 10.1016/j.bone.2015.05.014 CrossRefPubMedGoogle Scholar
  50. 50.
    Ramnemark A, Norberg M, Pettersson-Kymmer U, Eliasson M (2015) Adequate vitamin D levels in a Swedish population living above latitude 63 & #xB0;N: the 2009 Northern Sweden MONICA study. Int J Circumpolar Health 74:27963. doi: 10.3402/ijch.v74.27963 CrossRefPubMedGoogle Scholar
  51. 51.
    Degerud E, Hoff R, Nygård O, Strand E, Nilsen DW, Nordrehaug JE, Midttun Ø et al (2016) Cosinor modelling of seasonal variation in 25-hydroxyvitamin D concentrations in cardiovascular patients in Norway. Eur J Clin Nutr 70(4):517–522. doi: 10.1038/ejcn.2015.200 CrossRefPubMedGoogle Scholar
  52. 52.
    Klingberg Eva, Oleröd Göran, Konar Jan, Petzold Max, Hammarsten Ola (2015) Seasonal variations in serum 25-hydroxy vitamin D levels in a Swedish cohort. Endocrine 49(3):800–808. doi: 10.1007/s12020-015-0548-3 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Clinical ChemistryCounty Hospital of KalmarKalmarSweden
  2. 2.Department of Medicine and OptometryLinnaeus UniversityKalmarSweden
  3. 3.Department of Clinical PhysiologyCounty Hospital of KalmarKalmarSweden
  4. 4.Department of Medicine and Health SciencesUniversity Hospital LinkopingLinköpingSweden
  5. 5.Section of Endocrinology, Department of Internal MedicineCounty Hospital of KalmarKalmarSweden

Personalised recommendations