Femtosecond Laser-Induced Nonlinear Absorption in Thick Polystyrene

  • Bing Wang
  • XinCai Wang
  • HongYu Zheng
  • Yee Cheong LamEmail author


The nonlinear absorption behavior of thick polystyrene sample was experimentally investigated and theoretically analyzed. As polystyrene is transparent to the applied laser wavelength, the absorption was mainly through nonlinear absorption by the bulk material. The effective second order nonlinear absorption coefficient (β) was determined with the z scan technique. The nonlinear behavior at different laser powers: 5.2 mW, 10.4 mW, 14.4 mW and 23.5 mW were investigated. The transmittance of laser energy was measured and a significant change was observed with different sample distance from the laser focal plane. By treating the thick polystyrene sample as a stack of thin layers, the effective nonlinear absorption coefficient was determined to be 0.000695 m/W with a standard deviation of 0.000026.


Femtosecond laser Nonlinear absorption Thick material Polystyrene Laser intensity Z scan technique 



This work was supported by Singapore Institute of Manufacturing Technology under the Agency for Science, Technology and Research (A*STAR) Singapore.


  1. 1.
    Sugioka, K., Meunier, M., Piqué, A.: Laser Precision Microfabrication. Springer-Verlag, (2010)Google Scholar
  2. 2.
    Jiang, C., Tsai, H.L.: Femtosecond Lasers Ablation: Challenges and Opportunities. (2003)Google Scholar
  3. 3.
    Sheik-bahae, M., Said, A.A., Van Stryland, E.W.: High-sensitivity, single-beam n2 measurements. Opt. Lett. 14(17), 955–957 (1989). CrossRefGoogle Scholar
  4. 4.
    Heberle, J., Häfner, T., Schmidt, M.: Nonlinear absorption measurements of intraocular lens polymers by integrating Z-scan. Journal of Laser Applications. 28(2), (2016).
  5. 5.
    Noskovicova, E., Lorenc, D., Slusna, L., Velic, D.: Femtosecond Kerr index of cyclic olefin co/polymers for THz nonlinear optics. Opt. Mater. 60, 559–563 (2016). CrossRefGoogle Scholar
  6. 6.
    Shimoji, N., Hashimoto, T., Nasu, H., Kamiya, K.: Non-linear optical properties of Li2O-TiO2-P2O5 glasses. J. Non-Cryst. Solids. 324(1–2), 50–57 (2003). CrossRefGoogle Scholar
  7. 7.
    Rangel-Rojo, R., Kosa, T., Hajto, E., Ewen, P.J.S., Owen, A.E., Kar, A.K., Wherrett, B.S.: Near-infrared optical nonlinearities in amorphous chalcogenides. Opt. Commun. 109(1–2), 145–150 (1994). CrossRefGoogle Scholar
  8. 8.
    Ma, H., Gomes, A.S.L., de Araujo, C.B.: Infrared nonlinearity of commercial cd(S, se) glass composites. Opt. Commun. 87(1–2), 19–22 (1992). CrossRefGoogle Scholar
  9. 9.
    Rogers, D.C., Manning, R.J., Ainslie, B.J., Cotter, D., Yates, M.J., Parker, J.M., Morgan, S.: Concentration dependence of nonresonant nonlinearity in CdS xSe1-x doped glasses. IEEE Photon. Technol. Lett. 6(8), 1017–1019 (1994). CrossRefGoogle Scholar
  10. 10.
    Bertolottie, M., Liakhou, G., Michelotti, F., Senesi, F., Sibilia, C.: A beam distortion (z-scan) technique applied to the measurements of non-linearities in CdSxSe1-x doped glasses. Pure and Applied Optics: Journal of the European Optical Society Part A. 1(3), 145–156 (1992). CrossRefGoogle Scholar
  11. 11.
    Smirl, A.L., Boggess, T.F., Dubard, J., Cui, A.G.: Single- and multiple-beam nonlinear absorption and refraction measurements in semiconductors. In: 1990, pp. 251–261Google Scholar
  12. 12.
    Sheik-Bahae, M., Wang, J., Van Stryland, E.W.: Nondegenerate optical Kerr effect in semiconductors. IEEE J. Quantum Electron. 30(2), 249 (1994). CrossRefGoogle Scholar
  13. 13.
    Krauss, T.D., Wise, F.W.: Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS. Appl. Phys. Lett. 65(14), 1739–1741 (1994). CrossRefGoogle Scholar
  14. 14.
    Said, A.A., Sheik-Bahae, M., Hagan, D.J., Wei, T.H., Wang, J., Young, J., Van Stryland, E.W.: Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe. J. Opt. Soc. Am. B. 9(3), 405–414 (1992). CrossRefGoogle Scholar
  15. 15.
    Ma, C.R., Xiao, J., Yang, G.W.: Giant nonlinear optical responses of carbyne. J. Mater. Chem. C. 4(21), 4692–4698 (2016). CrossRefGoogle Scholar
  16. 16.
    Li, L., Yuan, H.J., Hu, G., Palffy-Muhoray, P.: Non-symmetric dimeric liquid crystals: the preparation and properties of the α-(4-cyanobiphenyl-4′-yloxy)-ω-(4-n-alkylanilinebenzylidene-4′-oxy)alkanes. Liq. Cryst. 16(4), 703–712 (1994). CrossRefGoogle Scholar
  17. 17.
    Gu, G., Zhang, W., Zen, H., Du, Y., Han, Y., Zhang, W., Dong, F., Xia, Y.: Large non-linear absorption in c6o thin films. J. Phys. B Atomic Mol. Phys. 26(15), 451–455 (1993). CrossRefGoogle Scholar
  18. 18.
    Wei, T.H., Hagan, D.J., Sence, M.J., Van Stryland, E.W., Perry, J.W., Coulter, D.R.: Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines. Applied Physics B Photophysics and Laser Chemistry 54(1), 46–51 (1992).
  19. 19.
    Sheik-Bahae, M., Said, A.A., Hagan, D.J., Soileau, M.J., Van Stryland, E.W.: Nonlinear refraction and optical limiting in "thick" media. OPTICE 30(8), 1228–1235 (1991).
  20. 20.
    Chapple, P.B., Hermann, J.A., McDuff, R.G.: Power saturation effects in thick single-element optical limiters. Opt. Quant. Electron. 31(5), 555–569 (1999). CrossRefGoogle Scholar
  21. 21.
    Zang, W.-P., Tian, J.-G., Liu, Z.-B., Zhou, W.-Y., Song, F., Zhang, C.-P.: Analytic solutions to Z-scan characteristics of thick media with nonlinear refraction and nonlinear absorption. J Opt Soc Am B. 21(1), 63–66 (2004). CrossRefGoogle Scholar
  22. 22.
    Rytlewski, P., Żenkiewicz, M.: Laser-induced surface modification of polystyrene. Appl. Surf. Sci. 256(3), 857–861 (2009). CrossRefGoogle Scholar
  23. 23.
    Li, H., Fan, Y., Kodzius, R., Foulds, I.: Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system. Microsyst. Technol. 18(3), 373–379 (2012). CrossRefGoogle Scholar
  24. 24.
    Wang, B., Wang, X., Zheng, H., Lam, Y.C.: Surface wettability modification of cyclic olefin polymer by direct femtosecond laser irradiation. Nanomaterials. 5(3), 1442–1453 (2015). CrossRefGoogle Scholar
  25. 25.
    Wang, B., Wang, X.C., Zheng, H.Y., Lam, Y.C.: Femtosecond laser-induced surface wettability modification of polystyrene surface. Sci. China Phys. Mech. Astron. 59(12), (2016).
  26. 26.
    Wang, B., Wang, X.C., Zheng, H.Y., Lam, Y.C.: Surface modification of polystyrene by femtosecond laser irradiation. Journal of Laser Micro Nanoengineering. 11(2), 253–256 (2016). CrossRefGoogle Scholar
  27. 27.
    Sheik-Bahae, M., Said, A.A., Wei, T.H., Hagan, D.J., Stryland, E.W.V.: Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26(4), 760–769 (1990). CrossRefGoogle Scholar
  28. 28.
    Artal, P., Manzanera, S., Komar, K., Gambín-Regadera, A., Wojtkowski, M.: Visual acuity in two-photon infrared vision. Optica. 4(12), 1488–1491 (2017). CrossRefGoogle Scholar
  29. 29.
    Rumi, M., Perry, J.W.: Two-photon absorption: an overview of measurements and principles. Adv. Opt. Photon. 2(4), 451–518 (2010). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.SIMTech-NTU Joint Laboratory (Precision Machining)Nanyang Technological UniversitySingaporeSingapore
  2. 2.School of Mechanical & Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.Singapore Institute of Manufacturing Technology (SIMTech), A*STARSingaporeSingapore
  4. 4.School of Mechanical EngineeringShandong University of TechnologyZiboChina

Personalised recommendations