Advertisement

Systematic Comparison of Thermal Annealing and Laser Treatment of TiO2 Thin Films Prepared by Sol-Gel Processing

  • Kristin Wesang
  • Arndt Hohnholz
  • Rainer Jahn
  • Sönke Steenhusen
  • Peer LöbmannEmail author
Article
  • 5 Downloads

Abstract

Thin films with titania composition were prepared on glass substrates by dip-coating from coating solutions based on soluble precursor powders. The as-dried deposits were thermally annealed in a furnace and irradiated by a CO2 laser, respectively. Oven temperature can systematically be correlated to laser power density in terms of film thickness and refractive index. Results indicate that the formation of anatase and rutile critically depends on the different treatment conditions. Some specific microstructural features that originate from the laser irradiation are highlighted.

Keywords

TiO2 Thin films Sol-gel processing Thermal curing Laser annealing 

Notes

Acknowledgements

This work was funded by the German Federal Ministry for Economic Affairs and Energy (IGF grant 19454 N project “LASIP”).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. 1.
    Löbmann, P.: Soluble powders as precursors for TiO2 thin films. J Sol-Gel Sci Technol. 33(3), 275–282 (2005)CrossRefGoogle Scholar
  2. 2.
    Löbmann, P., Jahn, R., Seifert, S., Sporn, D.: Inorganic thin films prepared from soluble powders and their applications. J. Sol-Gel Sci. Technol. 19, 473–477 (2000)CrossRefGoogle Scholar
  3. 3.
    Löbmann, P., Seifert, S., Merklein, S., Sporn, D.: Lead zirconate-titanate films prepared from soluble powders. J Sol-Gel Sci Technol. 13(1/3), 827–831 (1998)CrossRefGoogle Scholar
  4. 4.
    Müller, K., Hegmann, J., Jahn, R., Löbmann, P.: Adjustable refractive index of titania–alumina thin films prepared from soluble precursor powders. J Sol-Gel Sci Technol. 77(1), 69–77 (2016).  https://doi.org/10.1007/s10971-015-3829-7 CrossRefGoogle Scholar
  5. 5.
    Löbmann, P., Röhlen, P.: Industrial processing of TiO2 thin films from soluble precursor powders. Glas Sci Technol. 76(1), 1–7 (2003)Google Scholar
  6. 6.
    Godard, B., Janicot, S., Lathus, G., Pealat, M., Fogarassy, E.: Excimer Surface Treatment of Sol Gel Coatings, pp. 276–283. Osaka, Japan, SPIE (1999)Google Scholar
  7. 7.
    Sandu, C.S., Teodorescu, V.S., Ghica, C., Canut, B., Blanchin, M.G., Roger, J.A., Brioude, A., Bret, T., Hoffmann, P., Garapon, C.: Densification and crystallization of SnO2: Sb sol–gel films using excimer laser annealing. Appl Surf Sci. 208-209, 382–387 (2003).  https://doi.org/10.1016/S0169-4332(02)01412-5 CrossRefGoogle Scholar
  8. 8.
    Berkani, O., Latrous, K., El Hamzaoul, H., Bouazaoul, M., Capoen, B.: UV laser irradiation-induced crystallization in titania thick film prepared using sol-gel method. JNTM. 2(2), 13–17 (2012)Google Scholar
  9. 9.
    Nagase, T., Ooie, T., Sakakibara, J.: A novel approach to prepare zinc oxide films: excimer laser irradiation of sol-gel derived precursor films. Thin Solid Films. 357(2), 151–158 (1999)CrossRefGoogle Scholar
  10. 10.
    Tsang, W.M., Wong, F.L., Fung, M.K., Chang, J.C., Lee, C.S., Lee, S.T.: Transparent conducting aluminum-doped zinc oxide thin film prepared by sol–gel process followed by laser irradiation treatment. Thin Solid Films. 517(2), 891–895 (2008).  https://doi.org/10.1016/j.tsf.2008.08.157 CrossRefGoogle Scholar
  11. 11.
    Joya, Y.F., Liu, Z.: Effect of the excimer laser irradiation on sol–gel derived tungsten–titanium dioxide thin films. Appl Phys A Mater Sci Process. 102(1), 91–97 (2011).  https://doi.org/10.1007/s00339-010-6151-9 CrossRefGoogle Scholar
  12. 12.
    Joya, Y.F., Liu, Z., Wang, Z.: Generation of silver-anatase nanocomposite by excimer laser-assisted processing. AIP Adv. 2(032171), 1–8 (2012).  https://doi.org/10.1063/1.4754284 Google Scholar
  13. 13.
    Tsay, C.-Y., Huang, T.-T.: Characterization of low-temperature solution-processed indium–zinc oxide semiconductor thin films by KrF excimer laser annealing. Ceram Int. 40(6), 8287–8292 (2014).  https://doi.org/10.1016/j.ceramint.2014.01.030 CrossRefGoogle Scholar
  14. 14.
    Dellis, S., Isakov, I., Kalfagiannis, N., Tetzner, K., Anthopoulos, T.D., Koutsogeorgis, D.C.: Rapid laser-induced photochmeical conversion of sol-gel precursors to In2O3 layers and their application in thin-film transistors. J. Mater. Chem. C(5), 3673–3677 (2017).  https://doi.org/10.1039/c7tc00169 Google Scholar
  15. 15.
    Kim, M.S., Kim, S., Leem, J.-Y.: Laser-assisted sol-gel growth and characteristics of ZnO thin films. Appl Phys Lett. 100(25), 252108 (2012).  https://doi.org/10.1063/1.4729944 CrossRefGoogle Scholar
  16. 16.
    Langlade, C., Vannes, B., Sarnet, T., Autric, M.: Characterization of titanium oxide films with Magneli structure elaborated by sol-gel route. Appl Surf Sci. 186(1-4), 145–149 (2002)CrossRefGoogle Scholar
  17. 17.
    Al-Asedy, H.J., Al-Khafaji, S.A., Bakhtiar, H., Bidin, N.: Properties of Al- and Ga-doped thin zinc oxide films treated with UV laser radiation. Appl Phys A Mater Sci Process. 124(3), 223 (2018).  https://doi.org/10.1007/s00339-018-1619-0 CrossRefGoogle Scholar
  18. 18.
    Adraider, Y., Hodgson, S.N.B., Sharp, M.C., Zhang, Z.Y., Nabhani, F., Al-Waidh, A., Pang, Y.X.: Structure characterisation and mechanical properties of crystalline alumina coatings on stainless steel fabricated via sol–gel technology and fibre laser processing. J Eur Ceram Soc. 32(16), 4229–4240 (2012).  https://doi.org/10.1016/j.jeurceramsoc.2012.07.012 CrossRefGoogle Scholar
  19. 19.
    Kim, M.S., Lee, J., Kim, Y., Leem, J.-Y., Lee, S.-h., So, W., Jung, J.H., Kim, J.S.: Photoluminescence studies of ZnO thin films prepared using a laser-assisted sol-gel method. J Korean Chem Soc. 61(11), 1826–1830 (2012).  https://doi.org/10.3938/jkps.61.1826 Google Scholar
  20. 20.
    Hawelka, D., Stollenwerk, J., Pirch, N., Wissenbach, K., Loosen, P.: Improving surface properties by laser-based drying, gelation, and densification of printed sol–gel coatings. J Coat Technol Res. 11(1), 3–10 (2014).  https://doi.org/10.1007/s11998-013-9516-0 CrossRefGoogle Scholar
  21. 21.
    Baber, J., Raether, F.: Production of oxide ceramic coatings on glass by laser sintering. Glas Sci Technol. 73(7), 211–214 (2000)Google Scholar
  22. 22.
    Goyes, C., Ferrari, M., Armellini, C., Chiasera, A., Jestin, Y., Righini, G.C., Casas, A., Meacock, C., Solarte, E.: Effect of CO2 Laser Irradiation on the Performances of Sol-Gel-Derived Er 3+ −Activated SiO 2 - ZrO 2 and SiO 2 - HfO 2 Planar Waveguides, pp. 1–9. CA, SPIE, San Jose (2007)Google Scholar
  23. 23.
    Lei, J., Trofimov, A.A., Chen, J., Chen, Z., Hong, Y., Yuan, L., Zhu, W., Zhang, Q., Jacobsohn, L.G., Peng, F., Bordia, R.K., Xiao, H.: Thick Er-doped silica films sintered using CO2 laser for scintillation applications. Opt Mater. 68, 63–69 (2017).  https://doi.org/10.1016/j.optmat.2017.03.035 CrossRefGoogle Scholar
  24. 24.
    Mohammed, K.I., Jasim, A.S., Rashid, S.N.: Effect of annealing by CO2 laser on structural and optical properties of CuO thin films prepared by sol-gel method. Int J Phys. 4(3), 59–63 (2016)Google Scholar
  25. 25.
    Tao, X.Y., Fsaifes, I., Koncar, V., Dufour, C., Lepers, C., Hay, L., Capoen, B., Bouazaoui, M.: CO2 laser-induced crystallization of sol–gel-derived indium tin oxide films. Appl Phys A Mater Sci Process. 96(3), 741–749 (2009).  https://doi.org/10.1007/s00339-009-5157-7 CrossRefGoogle Scholar
  26. 26.
    Taylor, D.J., Cronin, J.P., Allard, L.F., Birnie III, J., Birnie III, D.P.: Microstructure of Laser-Fired, Sol−Gel-Derived Tungsten Oxide Films. Chem. Mater. 8, 1396–1401 (1996)CrossRefGoogle Scholar
  27. 27.
    Jiwei, Z., Liangying, Z., Xi, Y., Hofgson, S.N.B.: Characteristics od laser-densified and conventionally heat treated sol-gel derived silica-titania films. Surf Coat Technol. 138(2-3), 135–140 (2001)CrossRefGoogle Scholar
  28. 28.
    Chou, C.-C., Tsai, S.-D., Tu, W.-H., Yeh-Liu, Y.-E., Tsai, H.-L.: Low-temperature processing of sol-gel derived Pb(Zr,Ti)O3 thick films using CO2 laser annealing. J Sol-Gel Sci Technol. 42(3), 315–322 (2007).  https://doi.org/10.1007/s10971-007-0768-y CrossRefGoogle Scholar
  29. 29.
    McLachlan, A.D., Meyer, F.P.: Temperature dependence of the extinction coefficient of fused silica for CO2 laser wavelengths. Appl Opt. 26(9), 1728–1731 (1987)CrossRefGoogle Scholar
  30. 30.
    Buerhop, C., Blumenthal, B., Weissmann, R., Lutz, N., Biermann, S.: Glass surface treatment with excimer and CO2 lasers. Appl Surf Sci. 46(1-4), 430–434 (1990)CrossRefGoogle Scholar
  31. 31.
    Ganz, D., Reich, A., Aegerter, M.A.: Laser firing of transparent conducting SnO2 sol-gel coatings. J Non-Cryst Solids. 218, 242–246 (1997)CrossRefGoogle Scholar
  32. 32.
    Wang, X., Jiao, J., Lu, H.: Temperature and Stress Prediction for CO2 Laser Heating Glass Plate, pp. 1–6. Gmunden, Austria, SPIE (2006)Google Scholar
  33. 33.
    Chung, C.K., Chuang, K.P., Cheng, S.Y., Lin, S.L., Hsie, K.Y.: Effect of solution contents on the evolution of microstructure and photoluminescence of laser-annealed rutile TiO2 thin films. J Alloys Compd. 574, 83–87 (2013).  https://doi.org/10.1016/j.jallcom.2013.04.045 CrossRefGoogle Scholar
  34. 34.
    Knite, M., Mezinskis, G., Shebanovs, L., Pedaja, I., Sternberg, A.: CO2 -laser induced structure changes in PZT sol-gel films. Ferroelectrics. 286(1), 321–326 (2011).  https://doi.org/10.1080/00150190390206518 CrossRefGoogle Scholar
  35. 35.
    Knite, M., Mezinskis, G., Shebanovs, L., Pedaja, I., Sternbergs, A.: CO2 laser-induced structure changes in lead zirconate titanate Pb(Zr0.58Ti0.42)O3 sol–gel films. Appl. Surf. Sci. 208–209, 378–381 (2003).  https://doi.org/10.1016/S0169-4332(02)01408-3 CrossRefGoogle Scholar
  36. 36.
    Medina-Valtierra, J., Frausto-Reyes, C., Ortiz-Morales, M.: Phase transformation in semi-transparent TiO2 films irradiated with CO2 laser. Mater Lett. 66(1), 172–175 (2012).  https://doi.org/10.1016/j.matlet.2011.08.076 CrossRefGoogle Scholar
  37. 37.
    Bittner, A., Schmitt, A., Jahn, R., Löbmann, P.: Characterization of stacked sol–gel films: comparison of results derived from scanning electron microscopy. UV–vis spectroscopy and ellipsometric porosimetry Thin Solid Films. 520(6), 1880–1884 (2012).  https://doi.org/10.1016/j.tsf.2011.09.021 CrossRefGoogle Scholar
  38. 38.
    Bittner, A., Jahn, R., Löbmann, P.: TiO2 thin films on soda-lime and borosilicate glass prepared by sol–gel processing: influence of the substrates. J Sol-Gel Sci Technol. 58(2), 400–406 (2011).  https://doi.org/10.1007/s10971-011-2406-y CrossRefGoogle Scholar
  39. 39.
    Bockmeyer, M., Löbmann, P.: Densification and microstructural evolution of TiO2 films prepared by sol−gel processing. Chem Mater. 18(18), 4478–4485 (2006).  https://doi.org/10.1021/cm052048n CrossRefGoogle Scholar
  40. 40.
    Wang, C., Meinhardt, J., Löbmann, P.: Growth mechanism of Nb-doped TiO2 sol–gel multilayer films characterized by SEM and focus/defocus TEM. J Sol-Gel Sci Technol. 53(2), 148–153 (2010).  https://doi.org/10.1007/s10971-009-2070-7 CrossRefGoogle Scholar
  41. 41.
    Bockmeyer, M., Löbmann, P.: Crack formation in TiO2 films prepared by sol–gel processing: quantification and characterization. Thin Solid Films. 515(13), 5212–5219 (2007).  https://doi.org/10.1016/j.tsf.2006.11.193 CrossRefGoogle Scholar
  42. 42.
    Chung, C.-K., Lin, S.L., Chuang, K.P., Cheng, S.Y., Shei, K.Y.: Fabrication and property of titanium dioxide thin film using sol–gel method and CO2 laser annealing. Micro Nano Lett. 7(8), 701 (2012).  https://doi.org/10.1049/mnl.2012.0218 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kristin Wesang
    • 1
  • Arndt Hohnholz
    • 1
  • Rainer Jahn
    • 2
  • Sönke Steenhusen
    • 2
  • Peer Löbmann
    • 2
    Email author
  1. 1.Laser Zentrum Hannover e.VHanoverGermany
  2. 2.Fraunhofer-Institut für SilicatforschungWürzburgGermany

Personalised recommendations