Lasers in Manufacturing and Materials Processing

, Volume 6, Issue 3, pp 317–331 | Cite as

Experimental Microstructure Evaluation of Rene 80 in Laser Cladding

  • L. Huarte-Mendicoa
  • X. Penaranda
  • A. Lamikiz
  • S. MoralejoEmail author


In this paper the input process parameters of Rene 80 laser cladding are correlated with the obtained microstructure. Different microstructures from single crystal (SX) to polycrystalline are revealed in function of the operating range, with the energy density governing the result. Several experiments are performed over plates and thin machined walls to characterise the behaviour of the system, showing independence of the microstructure with the base width. Metallographic analysis shows that the resulted material build-up matches microstructure between substrate and clad material. Microhardness evaluation presents constant results in SX samples, reaching values similar to those presented in tests with extra homogenization heat treatments. A same tendency is observed in melt pool minor axis monitorization. It exhibits a slight deviation from a fixed value for SX cladded material and shows a bigger shift with the apparition of equiaxed grains. The suitability of the SX operating window is verified in the repair of a blade tip with variable width.


Laser cladding Single crystal Nickel-based superalloy Rene 80 Process monitoring Aero engine repair 



The authors wish to acknowledge the Spanish Ministerio de Economía y Competitividad for its support in the Retos-Colaboración project “Cladplus: Sistemas avanzados para la fabricación y reparación inteligente de componentes por plaqueado láser“(RTC-2014-2163-5).


  1. 1.
    Konter, M., Thurmann, M.: Materials and manufacturing of advanced industrial gas turbine components. J Mater Process Tech. 117(3), 386–390 (2001)CrossRefGoogle Scholar
  2. 2.
    Sidhu, R.K., Ojo, O.A., Chaturvedi, M.C.: Microstructural response of directionally solidified René 80 superalloy to gas-tungsten arc welding. Metall Mater Trans A. 40A(1), 150–162 (2009)CrossRefGoogle Scholar
  3. 3.
    Henderson, M.B., Arrell, D., Heobel, M., Larsson, R., Marchant, G.: Nickel-based superalloy welding practices for industrial gas turbine applications. Sci Technol Weld Join. 9(1), 13–21 (2004)CrossRefGoogle Scholar
  4. 4.
    Liu, W., DuPont, J.N.: Effects of melt-pool geometry on crystal growth and microstructure development in laser surface-melted superalloy single crystals: Mathematical modeling of single-crystal growth in a melt pool (part I). Acta Mater. 52, 4833–4847 (2004)Google Scholar
  5. 5.
    Liang, Y.J., Wang, H.M.: Origin of stray-grain formation and epitaxy loss at substrate during laser surface remelting of single-crystal nickel-base superalloys. Mater Des. 102, 297–302 (2016)CrossRefGoogle Scholar
  6. 6.
    Acharya, R., Bansal, R., Gambone, J.J., Kaplan, M.A., Fuchs, G.E., Rudawski, N.G., Das, S.: Additive manufacturing and characterization of René 80 superalloy processed through scanning laser epitaxy for turbine engine hot-section component repair. Adv Eng Mater. 17(7), 942–950 (2015)CrossRefGoogle Scholar
  7. 7.
    Gaumann, M., Bezencon, C., Canalis, P., Kurz, W.: Single-crystal laser deposition of superalloys: processing-microstructure maps. Acta Mater. 49(6), 1051–1062 (2001)CrossRefGoogle Scholar
  8. 8.
    Rottwinkel, B., Schweitzer, L., Noelke, C., Kaierle, S., Wesling, V.: Challenges for single-crystal (SX) crack cladding. Phys Procedia. 56, 301–308 (2014)CrossRefGoogle Scholar
  9. 9.
    Rottwinkel, B., Noelke, C., Kaierle, S., Wesling, V.: Laser cladding for crack repair of CMSX-4 single-crystalline turbine parts. Lasers Manuf Mater Process. 4(1), 13–23 (2017)CrossRefGoogle Scholar
  10. 10.
    Rush, M.T., Colegrove, P.A., Zhang, Z., Courtot, B.: An investigation into cracking in nickel-base superalloy repair welds. Adv Mater Res. 89-91, 467–472 (2010)CrossRefGoogle Scholar
  11. 11.
    Osterle, W., Krause, S., Moelders, T., Neidel, A., Oder, G., Volker, J.: Influence of heat treatment on microstructure and hot crack susceptibility of laser-drilled turbine blades made from René 80. Mater Charact. 59(11), 1564–1571 (2008)CrossRefGoogle Scholar
  12. 12.
    Osoba, L.O., Sidhu, R.K., Ojo, A.: On preventing HAZ cracking in laser welded DS Rene 80 superalloy. Mater Sci Tech Ser. 27(5), 897–902 (2011)CrossRefGoogle Scholar
  13. 13.
    Kim, H.I., Park, H.S., Koo, J.M., Seok, C.S., Yang, S.H., Kim, M.Y.: Evaluation of welding characteristics for manual overlay and laser cladding materials in gas turbine blades. J Mech Sci Technol. 26(7), 2015–2018 (2012)CrossRefGoogle Scholar
  14. 14.
    Vitek, J.M.: The effect of welding conditions on stray grain formation in single crystal welds – theoretical analysis. Acta Mater. 53(1), 53–67 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Nishimoto, K., Saida, K., Fujita, Y.: Crystal growth in laser surface melting and cladding of Ni-base single crystal superalloy. Weld World.52(5-6), 64–78 (2008)CrossRefGoogle Scholar
  16. 16.
    Ekrami, A., Moeinifar, S., Kokabi, A.H.: Effect of transient liquid phase diffusion bonding on microstructure and properties of a nickel base superalloy Rene 80. Mat Sci Eng A-Struct. 456(1-2), 93–98 (2007)CrossRefGoogle Scholar
  17. 17.
    Barjesteh, M.M., Abbasi, S.M., Madar, K.Z., Shirvani, K.: The effect of heat treatment on characteristics of the gamma prime phase and hardness of the nickel-based superalloy Rene 80. Mater Chem Phys. 227, 46–55 (2019)CrossRefGoogle Scholar
  18. 18.
    Moralejo, S., Penaranda, X., Nieto, S., Barrios, A., Arrizubieta, I., Tabernero, I., Figueras, J.: A feedforward controller for tuning laser cladding melt pool geometry in real time. Int J Adv Manuf Technol. 89(1), 821–831 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.IK4-IDEKO Research CenterElgoibarSpain
  2. 2.Department of Mechanical EngineeringUniversity of the Basque Country ETSI, ETSII-UPVBilbaoSpain

Personalised recommendations