Advertisement

Superresolution using supergrowth and intensity contrast imaging

  • Andrew N. JordanEmail author
Regular Paper
  • 36 Downloads

Abstract

This article explores the possibility of another kind of superresolution functionality that exists in superoscillatory functions besides the “faster than Fourier” feature. We posit the ability to resolve images with resolution beyond the wavelength of light used via the exponentially rising and falling parts of superoscillatory and related functions. We give some preliminary results that this technique can indeed be useful using intensity contrast imaging. The exponential growth or decay of these functions can give higher resolution of the image, provided the rate of falloff is faster than the smallest wavenumber of the light that is used: “supergrowth”. One limitation of this proposal is the high dynamic range the detector would need to possess to map out several decades of intensity. An outstanding question is to find the optimal image reconstruction method using a superoscillatory point spread function that makes optimal use of the function’s unique properties. We give a number of conjectures about this new kind of supergrowth imaging technique as an outlook for future research.

Keywords

Superoscillations Superresolution Supergrowth 

Notes

Acknowledgements

I thank Marc Lopez for discussions and encouragement in this project. This work was supported by Chapman University during the Superoscillations—Theoretical Aspects and Applications Symposium, held in Cetraro, Italy from June 15 to 16, 2019. I thank Daniele Struppa for the invitation.

References

  1. 1.
    Aharonov, Y., Popescu, S., Rohrlich, D.: How can an infra-red photon behave as a gamma ray?. Tel-Aviv University Preprint TAUP 1847–90 Google Scholar
  2. 2.
    Berry, M.V., Popescu, S.: Evolution of quantum superoscillations and optical superresolution without evanescent waves. J. Phys. A Math. Gen. 39(22), 6965 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Berry, M.V.: Evanescent and real waves in quantum billiards and Gaussian beams. J. Phys. A Math. Gen. 27(11), L391 (1994)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Berry, M., Zheludev, N., Aharonov, Y., Colombo, F., Sabadini, I., Struppa, D.C., Tollaksen, J., Rogers, E.T., Qin, F., Hong, M., et al.: Roadmap on superoscillations. J. Opt. 21(5), 053002 (2019)CrossRefGoogle Scholar
  5. 5.
    Aharonov, Y., Colombo, F., Sabadini, I., Struppa, D.C., Tollaksen, J.: Some mathematical properties of superoscillations. J. Phys. A Math. Theor. 44(36), 365304 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Popescu, S.: Multi-time and non-local measurements in quantum mechanics. Ph.D. thesis, PhD Thesis (1991)Google Scholar
  7. 7.
    Lipson, A., Lipson, S.G., Lipson, H.: Optical Physics. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  8. 8.
    Tsang, M., Nair, R., Lu, X.M.: Quantum theory of superresolution for two incoherent optical point sources. Phys. Rev. X 6, 031033 (2016)Google Scholar
  9. 9.
    Pendharker, S., Shende, S., Newman, W., Ogg, S., Nazemifard, N., Jacob, Z.: Axial super-resolution evanescent wave tomography. Opt. Lett. 41(23), 5499 (2016)CrossRefGoogle Scholar
  10. 10.
    Boto, A.N., Kok, P., Abrams, D.S., Braunstein, S.L., Williams, C.P., Dowling, J.P.: Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733 (2000)CrossRefGoogle Scholar
  11. 11.
    Huang, F.M., Chen, Y., de Abajo, F.J.G., Zheludev, N.I.: Optical super-resolution through super-oscillations. J. Opt. A Pure Appl. Opt. 9(9), S285 (2007)CrossRefGoogle Scholar
  12. 12.
    Kozawa, Y., Matsunaga, D., Sato, S.: Superresolution imaging via superoscillation focusing of a radially polarized beam. Optica 5(2), 86 (2018)CrossRefGoogle Scholar
  13. 13.
    McCutchen, C.: Optical systems for observing surface topography by frustrated total internal reflection and by interference. Rev. Sci. Instrum. 35(10), 1340 (1964)CrossRefGoogle Scholar
  14. 14.
    Guerra, J.M.: Photon tunneling microscopy. Appl. Opt. 29(26), 3741 (1990)CrossRefGoogle Scholar
  15. 15.
    Pohl, D.W., Denk, W., Lanz, M.: Optical stethoscopy: image recording with resolution \(\lambda \)/20. Appl. Phys. Lett. 44(7), 651 (1984)CrossRefGoogle Scholar
  16. 16.
    Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Elsevier, Amsterdam (2013)zbMATHGoogle Scholar
  17. 17.
    Motka, L., Stoklasa, B., D’Angelo, M., Facchi, P., Garuccio, A., Hradil, Z., Pascazio, S., Pepe, F., Teo, Y., Řeháček, J., et al.: Optical resolution from Fisher information. Eur. Phys. J. Plus 131(5), 130 (2016)CrossRefGoogle Scholar

Copyright information

© Chapman University 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of RochesterRochesterUSA
  2. 2.Institute for Quantum StudiesChapman UniversityOrangeUSA

Personalised recommendations