Advertisement

Irreversibility, the time arrow and a dynamical proof of the second law of thermodynamics

  • Walter F. WreszinskiEmail author
Regular Paper
  • 1 Downloads

Abstract

We provide a dynamical proof of the second law of thermodynamics, along the lines of an argument of Penrose and Gibbs, making crucial use of the upper semicontinuity of the mean entropy proved by Robinson and Ruelle and Lanford and Robinson. An example is provided by a class of models of quantum spin systems introduced by Emch and Radin. Consequences regarding irreversibility and the time arrow, as well as possible extensions to quantum continuous systems, are discussed.

Keywords

Irreversibility Time-arrow Specific entropy Second law 

Notes

Acknowledgements

We should like to thank Lawrence Landau, Heide Narnhofer and Derek W. Robinson for their remarks in a fruitful correspondence. The remarks of professors Oliver Penrose and David Ruelle in correspondence are also gratefully acknowledged. In a previous version we overlooked the fact that the density matrices \((\rho _{t})_{\Lambda }\) and \(\rho _{\Lambda ,t}\), the latter given by (2.10), are not the same, unless there are no interactions. This was pointed out to us by Lawrence Landau, as well as by the reviewer. We are very grateful to the reviewer, who generously provided us with Propositions 2.1 and 2.2, which prove that this difference indeed does not affect the specific entropy. He should be considered a co-author of this paper.

References

  1. 1.
    Bratelli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics I. Springer, Berlin (1987)CrossRefGoogle Scholar
  2. 2.
    Bratelli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics II, 2nd edn. Springer, Berlin (1997)CrossRefGoogle Scholar
  3. 3.
    Carruthers, G.R.: Atomic and molecular hydrogen in interstellar space. Sp. Sci. Rev. 10, 459 (1970)CrossRefGoogle Scholar
  4. 4.
    Emch, G.G.: Non-markovian model for the approach to equilibrium. J. Math. Phys. 7, 1198 (1966)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Emch, G.G.: Generalized K flows. Commun. Math. Phys. 49, 191–215 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fannes, M.: A continuity property of the entropy density for quantum lattice systems. Commun. Math. Phys. 31, 291–294 (1973)CrossRefzbMATHGoogle Scholar
  7. 7.
    Froehlich, J.: A brief review of the ET.H approach to quantum mechanics. arXiv:1905.06603 (2019)
  8. 8.
    Goldstein, S., Lebowitz, J.L., Tumulka, R., Zanghi, N.: Gibbs and Boltzmann entropy in classical and quantum mechanics. arXiv:1903.11870 (2019 )
  9. 9.
    Haag, R.: On the sharpness of localization of individual events in space and time. Found. Phys. 43, 1295–1313 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Harrison, E.R.: Cosmology. Cambridge University Press, Cambridge (1981)Google Scholar
  11. 11.
    Jäkel, C., Narnhofer, H., Wreszinski, W.F.: On the mixing property for a class of states of relativistic quantum fields. J. Math. Phys. 51, 052703 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lowe, I., Norberg, R.E.: Free induction decays in solids. Phys. Rev. 107, 46 (1957)CrossRefzbMATHGoogle Scholar
  13. 13.
    Lebowitz, J.L., Penrose, O.: Modern ergodic theory. Phys. Today 26, 23–29 (1973)CrossRefGoogle Scholar
  14. 14.
    Lanford, O., Robinson, D.W.: Mean entropy of states in quantum statistical mechanics. J. Math. Phys. 9, 1120 (1968)CrossRefzbMATHGoogle Scholar
  15. 15.
    Lieb, E.H., Robinson, D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251 (1972)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lieb, E.H., Yngvason, J.: The physics and mathematics of the second law of thermodynamics. Phys. Rep. 310, 1–96 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lieb, E., Yngvason, J.: The entropy concept for non-equilibrium states. Proc. R. Soc. A 469, 20130408 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Nachtergaele, B., Sims, R., Young, A.: Quasi-locality bounds for quantum lattice systems. I. Lieb-Robinson bounds, quasi-local maps and spectral-flow automorphisms. J. Math. Phys. 60, 061101 (2019)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Narnhofer, H., Thirring, W.: Algebraic K systems. Lett. Math. Phys. 20, 231 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Narnhofer, H., Thirring, W.: Galilei invariant quantum field theories with pair interaction—a review. Int. J. Mod. Phys. A 17, 2937–2970 (1991)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Narnhofer, H., Wreszinski, W.F.: On reduction of the wave packet, decoherence, irreversibility and the second law of thermodynamics. Phys. Rep. 541, 249–278 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Penrose, O.: Foundations of Statistical Mechanics. Pergamon Press, Oxford (1970)zbMATHGoogle Scholar
  23. 23.
    Penrose, O.: Foundations of statistical mechanics. Rep. Progr. Phys. 42, 1937 (1979)CrossRefGoogle Scholar
  24. 24.
    Pusz, W., Woronowicz, S.: Passive states and KMS states for general quantum systems. Commun. Math. Phys. 58, 273 (1978)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Radin, C.: Approach to equilibrium in a simple model. J. Math. Phys. 11, 2945 (1970)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Robinson, D.W.: The statistical mechanics of quantum spin systems. Commun. Math. Phys. 6, 151 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Robinson, D.W.: Return to equilibrium. Commun. Math. Phys. 31, 171–189 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Robinson, D.W., Ruelle, D.: Mean entropy of states in classical statistical mechanics. Commun. Math. Phys. 5, 288 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Ruelle, D.: States of classical statistical mechanics. J. Math. Phys. 8, 1657 (1967)CrossRefzbMATHGoogle Scholar
  30. 30.
    Sewell, G.L.: Quantum Theory of Collective Phenomena. Oxford University Press, Oxford (1986)Google Scholar
  31. 31.
    Sinai, Ya G.: Topics in Ergodic Theory. Princeton University Press, Princeton (1994)CrossRefzbMATHGoogle Scholar
  32. 32.
    Thirring, W.: Classical Mathematical Physics, 3rd edn. Springer, Berlin (1992)Google Scholar
  33. 33.
    Wreszinski, W.F.: Unstable States in a Model of Nonrelativistic Quantum Electrodynamics. Paper in preparationGoogle Scholar

Copyright information

© Chapman University 2019

Authors and Affiliations

  1. 1.Instituto de FisicaUniversidade de São Paulo (USP)São PauloBrazil

Personalised recommendations