Realization of tensor product and of tensor factorization of rational functions

  • Daniel AlpayEmail author
  • Izchak Lewkowicz
Regular Paper


We study the state space realization of a tensor product of a pair of rational functions. At the expense of “inflating” the dimensions, we recover the classical expressions for realization of a regular product of rational functions. Under an additional assumption that the limit at infinity of a given rational function exists and is equal to identity, we introduce an explicit formula for a tensor factorization of this function.


State space realization Tensor product Factorization of rational functions 

Mathematics Subject Classification

46B28 93C15 



It is a pleasure to thank the referee for his/her careful reading and valuable comments.


  1. 1.
    Bart, H., Gohberg, I., Kaashoek, M.A., Van Dooren, P.: Factorizations of transfer functions. SIAM J. Control Optim. 18(6), 675–696 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bart, H., Gohberg, I., Kaashoek, M.A.: Minimal Factorization of Matrix and Operator Functions, Operator Theory: Advances and Applications, vol. 1. Birkhäuser, Basel (1979)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bart, H., Gohberg, I., Kaashoek, M.A., Ran, A.C.M.: A State Space Approach to Canonical Factorization with Applications, Operator Theory: Advances and Applications, vol. 200. Birkhäuser, Basel (2010). Linear Operators and Linear SystemsGoogle Scholar
  4. 4.
    Cohen-Tannoudji, C., Diu, B., Laloë, F.: Mécanique Quantique. Tome I. Hermann, Paris (1977)Google Scholar
  5. 5.
    Fuhrmann, P.A., Helmke, U.: The Mathematics of Networks of Linear Systems. Universitext. Springer, Cham (2015)CrossRefzbMATHGoogle Scholar
  6. 6.
    Gohberg, I., Kaashoek, M.A. (eds.): Constructive Methods of Wiener–Hopf Factorization. Operator Theory: Advances and Applications, vol. 21. Birkhäuser, Basel (1986)Google Scholar
  7. 7.
    Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1994). Corrected reprint of the 1991 originalGoogle Scholar
  8. 8.
    Neveu, J.: Processus aléatoires gaussiens. Number 34 in Séminaires de mathématiques supérieures. Les presses de l’université de Montréal (1968)Google Scholar
  9. 9.
    Parthasarathy, K.R.: Quantum computation, quantum error correcting codes and information theory. Published for the Tata Institute of Fundamental Research. Mumbai; by Narosa Publishing House, New Delhi (2006)Google Scholar

Copyright information

© Chapman University 2019

Authors and Affiliations

  1. 1.Faculty of Mathematics, Physics, and Computation, Schmidt College of Science and TechnologyChapman UniversityOrangeUSA
  2. 2.Department of Electrical EngineeringBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations