# On classical systems and measurements in quantum mechanics

- 42 Downloads

## Abstract

The recent rigorous derivation of the Born rule from the dynamical law of quantum mechanics Allahverdyan et al. (Phys Rep 525:1–166. https://doi.org/10.1016/j.physrep.2012.11.001, 2013) is taken as incentive to reexamine whether quantum mechanics has to be an inherently probabilistic theory. It is shown, as an existence proof, that an alternative perspective on quantum mechanics is possible where the fundamental ontological element, the ket, is not probabilistic in nature and in which the Born rule can also be derived from the dynamics. The probabilistic phenomenology of quantum mechanics follows from a new definition of statistical state in the form of a probability measure on the Hilbert space of kets that is a replacement for the von Neumann statistical operator to address the lack of uniqueness in recovering the pure states included in mixed states, as was pointed out by Schrödinger. From the statistical state of a quantum system, classical variables are defined as collective variables with negligible dispersion. In this framework, classical variables can be chosen to define a derived classical system that obeys, by Ehrenfest’s theorem, the laws of classical mechanics and that describes the macroscopic behavior of the quantum system. The Born rule is derived from the dynamics of the statistical state of the quantum system composed of the observed system interacting with the measurement system and the role of the derived classical system in the process is exhibited. The approach suggests to formulate physical systems in second quantization in terms of local quantum fields to ensure conceptually equivalent treatment of space and time. A real double-slit experiment, as opposed to a thought experiment, is studied in detail to illustrate the measurement process.

## Keywords

Quantum mechanics Measurement theory Quantum statistical mechanics## Mathematics Subject Classification

81P15 28C20 82C10 60G15## Notes

### Acknowledgements

My deepest appreciation goes to the anonymous reviewers for their thorough analysis of the paper and numerous substantive comments and suggestions that resulted in a very much improved end result. My thanks go to Henk Monkhorst and several anonymous referees for their valuable comments and suggestions on earlier expositions of the ideas presented in this paper.

## Supplementary material

## References

- 1.Aharonov, Y., Albert, D.Z.: States and observables in quantum field theories. Phys. Rev. D
**21**(12), 3316–3324 (1980)MathSciNetCrossRefGoogle Scholar - 2.Aharonov, Y., Albert, D.Z.: Can we make sense out of the measurement process in relativistic quantum mechanics? Phys. Rev. D
**24**(2), 359–370 (1981)CrossRefGoogle Scholar - 3.Allahverdyan, A.E., Balian, R., Nieuwenhuizen, T.M.: Understanding quantum measurement from the solution of dynamical model. Phys. Rep.
**525**(1), 1–166 (2013). https://doi.org/10.1016/j.physrep.2012.11.001 MathSciNetCrossRefzbMATHGoogle Scholar - 4.Allahverdyan, A.E., Balian, R., Nieuwenhuizen, T.M.: A sub-ensemble theory of ideal quantum measurement processes. Ann. Phys.
**376**, 324–352 (2017). https://doi.org/10.1016/j.aop.2016.11.001 MathSciNetCrossRefzbMATHGoogle Scholar - 5.Araki, H.: Mathematical Theory of Quantum Fields. No. 101 in International Series of Monographs on Physics. Oxford University Press, Oxford: Japanese Edition: Ryoshiba no Suri, p. 1993. Iwanami Shoten Publishers, Tokyo (1999)Google Scholar
- 6.ATLAS Collaboration: Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B
**716**, 1–29 (2012)Google Scholar - 7.Ballentine, L.E.: The Statistical Interpretation of Quantum Mechanics. Rev. Mod. Phys.
**42**(4), 358–381 (1970)CrossRefzbMATHGoogle Scholar - 8.Bayfield, J.E.: Quantum Evolution: An Introduction to Time-dependent Quantum Mechanics. Wiley, New York (1999)Google Scholar
- 9.Beard, A., Fong, R.: No-interaction theorem in classical relativistic mechanics. Phys. Rev.
**182**(5), 1397–1399 (1969). https://doi.org/10.1103/PhysRev.182.1397 CrossRefGoogle Scholar - 10.Bell, J.: On the Einstein–Podolsky–Rosen paradox. Physics
**1**, 195–200 (1964)MathSciNetCrossRefGoogle Scholar - 11.Bogachev, V.I.: Guassian Measures, Mathematical Surveys and Monographs, vol. 62. American Mathematical Society, Providence (1998)Google Scholar
- 12.Bogolubov, N.N., Bogolubov Jr., N.N.: Introduction to Quantum Statistical Mechanics, 2nd edn. World Scientific, Singapore (2010)zbMATHGoogle Scholar
- 13.Bogolubov, N.N., Logunov, A.A., Todorov, I.T.: Introduction to Axiomatic Quantum Field Theory. Advanced Book Program. W.A. Benjamin, Reading (1975)Google Scholar
- 14.Bohr, N.: On the Constitution of Atoms and Molecules Part I. Philos. Mag. Ser. 6
**26**(151), 1–25 (1913)Google Scholar - 15.Bohr, N.: On the constitution of atoms and molecules. Part II systems containing only a single nucleus. Philos. Mag. Ser. 6
**26**(153), 476–502 (1913)Google Scholar - 16.Bohr, N.: On the constitution of atoms and molecules. Part III systems containing several nuclei. Philos. Mag. Ser. 6
**26**(155), 857–875 (1913)Google Scholar - 17.Bohr, N.: The Quantum Postulate and the Recent Development of Atomic Theory. Nature pp. 580–590 (1928). Content of lecture delivered on Sept. 16, 1927 at the Volta celebration in ComoGoogle Scholar
- 18.Born, M.: Zur Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik
**37**, 863–867 (1926)CrossRefzbMATHGoogle Scholar - 19.Born, M.: Zur Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik
**38**, 803–827 (1926)CrossRefzbMATHGoogle Scholar - 20.Born, M.: The Mechanics of the Atom. International Text Books of Exact Science. G. Bell and Sons, Ltd., London (1927). German original “Vorlesungen Über Atommechanik”, Springer (1925). English edition reproduced by ULAN PressGoogle Scholar
- 21.Born, M., Heisenberg, W., Jordan, P.: On Quantum Mechanics II. In: van der Waerden [89], pp. 95–137. Original: Zeitschrift für Physik 35 (1926) 557–615Google Scholar
- 22.Busch, P., Grabowski, M., Lahti, P.J.: Operational Quantum Physics, Lecture Notes in Physics, vol. m31. Springer, Berlin (1995)zbMATHGoogle Scholar
- 23.Busch, P., Lahti, P.J., Mittelsteadt, P.: The Quantum Theory of Measurement, Lecture Notes in Physics, vol. m2. Sprinter, Berlin (1991)CrossRefGoogle Scholar
- 24.Chaichian, M., Demichev, A.: Path Integrals in Physics Volume I: Stochastic Processes and Quantum Mechanics, Series in Mathematical and Computational Physics, vol. I. Institute of Physics Publishing, Bristol (2001)Google Scholar
- 25.CMS Collaboration: Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B
**817**, 30–61 (2012)Google Scholar - 26.Currie, D.G.: Interaction contra classical relativistic Hamiltonian particle mechanics. J. Math. Phys
**4**(12), 1470–1488 (1963). https://doi.org/10.1063/1.1703928 MathSciNetCrossRefzbMATHGoogle Scholar - 27.d’ Espagnat, B.: Conceptual Foundations of Quantum Mechanics, 2nd edn., Advanced Book Classics. Addison-Wesley Publishing Company, Reading (1976). Reprinted in 1989Google Scholar
- 28.d’ Espagnat, B.: Veiled Reality An Analysis of Present-Day Quantum Mechanical Concepts. Frontiers in Physics. Addison-Wesley Publishing Company, Reading (1995)Google Scholar
- 29.d’ Espagnat, B.: On Physics and Philosophy. Princeton University Press, Princeton (2006)Google Scholar
- 30.De Raedt, H., Michielsen, K., Hess, K.: Irrelevance of Bell’s theorem for experiments involving correlation in space and time: a specific loophole-free computer-example. ArXiv arxiv:1605.0537v1 (5 pages) (2016)
- 31.Dimock, J.: Quantum Mechanics and Quantum Field Theory: A Mathematical Primer. Cambridge University Press, Cambridge (2011)CrossRefzbMATHGoogle Scholar
- 32.Dirac, P.A.M.: The Fundamental Equations of Quantum Mechanics. In: van der Waerden [89], pp. 307–320. Original: Proc. Roy. Soc. Lond. A
**109**, 642–653 (1925)Google Scholar - 33.Dirac, P.A.M.: The principles of quantum mechanics, 1958 4th edn., No. 27 . In: International Series of Monographs on Physics. Clarendon Press, Oxford (1930)Google Scholar
- 34.Ehrenfest, P.: Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik. Zeitschrift für Physik
**45**(7–8), 455–457 (1927)CrossRefzbMATHGoogle Scholar - 35.Einstein, A.: Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik
**17**, 132–148 (1905). https://doi.org/10.1002/andp.19053220607 CrossRefzbMATHGoogle Scholar - 36.Einstein, A.: Quanten-Mechanik und Wirklichkeit. Dialectica
**2**(3-4), 320–324 (1948). https://doi.org/10.1111/j.1746-8361.1948.tb00704.x. Translated: Quantum Mechanics and Reality - 37.Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev.
**47**, 777–780 (1935)CrossRefzbMATHGoogle Scholar - 38.Elze, H.T.: Linear dynamics of quantum-classical hybrids. Phys. Rev. A
**85**(5), 052,109 (2012). https://doi.org/10.1103/PhysRevA.85.052109 - 39.Everett III, H.: “Relative State” Formulation of Quantum Mechanics. In: Wheeler and Zurek [93], chap. II.3, pp. 315–323. Original: Rev. Mod. Phys. 29 (1957) 454–462Google Scholar
- 40.Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965). Emended edition by Daniel F. Styer published by Dover (2010)Google Scholar
- 41.Frigg, R.: A Field Guide to Recent Work in the Foundations of Statistical Mechanics. In: Rickless [68], chap. 3, pp. 99–196Google Scholar
- 42.Gilder, L.: The Age of Entanglement when Quantum Physics was Reborn. Vintage Books, New York (2008)Google Scholar
- 43.Goldstein, H.: Classical Mechanics, 2nd edn. Addison-Wesley, Reading (1980)zbMATHGoogle Scholar
- 44.Greenstein, G., Zajonc, A.G.: The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics, 2nd edn., Jones and Bartlett Titles in Physics and Astronomy. Jones and Bartlett Publishers, Sudbury (2006)Google Scholar
- 45.Haag, R.: Local Quantum Physics: Fields, Particles, Algebras. Texts and Monographs in Physics, 2nd edn. Springer, Berlin (1996)CrossRefzbMATHGoogle Scholar
- 46.Harshman, N.L., Ranade, K.S.: Observables can be tailored to change the entanglement of any pure state. Phys. Rev. A
**84**, 012303 (2011). https://doi.org/10.1103/PhysRevA.84.012303 - 47.Heisenberg, W.: Quantum Theoretical Re-interpretation of Kinematic and Mechanical Relations. In: van der Waerden [89], pp. 261–276. Original: Zeitschrift für Physik 35 (1926) 557–615Google Scholar
- 48.Heisenberg, W.: Über den anshaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Phsyik
**48**(3), 127–198 (1927). https://doi.org/10.1007/BF01397280 Google Scholar - 49.Heslot, A.: Quantum mechanics as a classical theory. Phys. Rev. D
**31**(6), 1341–1348 (1985). https://doi.org/10.1103/PhysRevD.31.1341 MathSciNetCrossRefGoogle Scholar - 50.Jammer, M.: The Conceptual Development of Quantum Mechanics. International Series in Pure and Applied Physics. McGraw-Hill, New York (1966)Google Scholar
- 51.Jauch, J.M.: Foundations of Quantum Mechanics. Addison and Wesley, Reading (1968)zbMATHGoogle Scholar
- 52.Johnson, G.W., Lapidus, M.L.: The Feynman Integral and Feynman’s Operational Calculus. Oxford Mathematical Monographs. Clarendon Press, Oxford (2000)zbMATHGoogle Scholar
- 53.José, J.V., Saletan, E.J.: Classical Dynamics: A Contemporary Approach. Cambridge University Press, Cambridge (1998)CrossRefzbMATHGoogle Scholar
- 54.van Kampe, N.G.: Ten theorems about quantum mechanical measurements. Physica A
**153**(1), 97–113 (1988). https://doi.org/10.1016/0378-4371(88)90105-7 MathSciNetCrossRefGoogle Scholar - 55.Khrennikov, A.Y.: Classical probability model for Bell inequality. J. Phys. Conf. Ser.
**504**, 012019 (2014). https://doi.org/10.1088/1742-6596/504/1/012019. EMQ13: Emergent Quantum Mechanics 2013 - 56.Kupczynski, M.: Bell inequlities, experimental protocols and contextuality. Found. Phys.
**45**(7), 735–753 (2015). https://doi.org/10.1007/s10701-014-9863-4 MathSciNetCrossRefzbMATHGoogle Scholar - 57.Le Bellac, M.: Non equilibrium statistical mechanics. In: DEA Cours aux Houches, August 2007. HAL archives ouvertes (2007). https://cel.archives-ouvertes.fr/cel-00176063
- 58.Ledoux, M.: The Concentration of Measure Phenomenon, Mathematical Surveys and Monographs, vol. 89. AMS, Providence (2001)Google Scholar
- 59.Lundeen, J.S., Sutherland, B., Patel, A., Stewart, C., Bamber, C.: Direct measurement of the quantum wavefunction. Nature
**474**, 188–191 (2011). https://doi.org/10.1038/nature10120 CrossRefGoogle Scholar - 60.de Muynck, W.M.: Foundations of Quantum Mechanics, An Empiricist Approach. Kluwer Academic Publishers, Dordrecht (2002)CrossRefzbMATHGoogle Scholar
- 61.von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932). Reprinted 1968Google Scholar
- 62.Nieuwenhuizen, T.M.: Is the contextuality loophole fatal for the derivation of Bell inequalities? Found. Phys.
**41**(3), 580–591 (2011). https://doi.org/10.1007/s10701-010-9461-z MathSciNetCrossRefzbMATHGoogle Scholar - 63.Park, J.L.: Nature of quantum states. Am. J. Phys.
**36**, 211–226 (1968). https://doi.org/10.1119/1.1974484 CrossRefGoogle Scholar - 64.Peres, A.: Can we undo quantum measurements? In: Wheeler and Zurek [93], chap. V.7, pp. 692–696. Original: Phys. Rev. D22 (1980) 879–883Google Scholar
- 65.Pusey, M.F., Barrett, J., Rudolph, T.: On the reality of the quantum state. Nat. Phys.
**8**, 475–479 (2012). https://doi.org/10.1038/nphys2309 CrossRefGoogle Scholar - 66.Reed, M., Simon, B.: Methods of Modern Mathematical Physics: Functional Analysis, vol. I. Academic Press, New York (1972)zbMATHGoogle Scholar
- 67.Reed, M., Simon, B.: Methods of Modern Mathematical Physics: Fourier Analysis, Self-Adjointness, vol. II. Academic Press, New York (1975)zbMATHGoogle Scholar
- 68.Rickles, D. (ed.): The Ashgate Companion to Contemporary Philosophy of Physics. Ashgate Publishing Company, Burlington (2008)Google Scholar
- 69.Schatz, G.C., Ratner, M.A.: Quantum Mechanics in Chemistry. Prentice Hall, Engelwood Cliffs (1993)Google Scholar
- 70.Schmidt, E.: Zur Theorie der linearen und nichtlinearen Integralgleichungen. I. Teil: Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener. Math. Ann.
**63**, 433–476 (1907)Google Scholar - 71.Schmidt, E.: Zur Theorie der linearen und nichtlinearen Integralgleichungen. Zweite Abhandlung: Auflösung der allgemeinen linearen Integralgleichungen. Math. Ann.
**64**, 161–174 (1907)Google Scholar - 72.Schrödinger, E.: Quantisation as a problem of proper values (part I). In: Collected papers on Wave Mechanics [78], pp. 1–12. Original: Annalen der Physik 79 (1926) 489–527Google Scholar
- 73.Schrödinger, E.: Quantisation as a problem of proper values (Part III: perturbation theory, with application to the stark effect of the Balmer lines. In: Collected papers on Wave Mechanics [78], pp. 62–101. Original: Annalen der Physik 80 (1926) 29–82Google Scholar
- 74.Schrödinger, E.: Über das Verhältnis der Heisenberg-Born-Jordanschen Quantenmechanik zu der meinem – On the relation between the quantum mechanics of Heisenberg, Born, and Jordan and that of Schrödinger. Annalen der Physik
**384**, 734–756 (1926). https://doi.org/10.1002/andp.19263840804. Original in volume 79CrossRefzbMATHGoogle Scholar - 75.Schrödinger, E.: Discussion of probability relations between separated systems. Math. Proc. Camb. Philos. Soc.
**31**(4), 555–563 (1935). https://doi.org/10.1017/S0305004100013554 CrossRefzbMATHGoogle Scholar - 76.Schrödinger, E.: Probability relations between separated systems. Math. Proc. Camb. Philos. Soc.
**32**(3), 446–452 (1936). https://doi.org/10.1017/S0305004100019137 CrossRefzbMATHGoogle Scholar - 77.Schrödinger, E.: Statistical Thermodynamics, 2nd edn. Cambridge University Press, Cambridge (1952). Reprinted 1989 by Dover PublicationsGoogle Scholar
- 78.Schrödinger, E.: Collected Papers on Wave Mechanics. Chelsea Publishing Company, New York (1982)Google Scholar
- 79.Schwartz, M.D.: Quantum Field Theory and the Standard Model. Cambridge University Press, New York (2014)Google Scholar
- 80.Skorohod, A.V.: Integration in Hilbert Space. No. 79 in Ergebnisse der Mathematik und ihre Grenzgebiete. Springer, Berlin (1974). Russian edition: Integrirovanie v gilbetovyh prostranstvah, Nauka Izdatel’stvo, Moscow, 1974, translated by Kenneth WickwireGoogle Scholar
- 81.Sohrab, H.H.: Basic Real Analysis. Birkhauser, Boston (2003)CrossRefzbMATHGoogle Scholar
- 82.Sommerfeld, A.: Atombau und Spektrallinien. Friedrich Vieweg und Sohn, Braunschweig (1921). First edition 1919. Reproduced by Nabu Public Domain ReprintsGoogle Scholar
- 83.Srednicki, M.: Quantum Field Theory. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
- 84.Streater, R.F., Wightman, A.S.: PCT, Spin and Statistics, and All That. Princeton Landmarks in Physics. Princeton University Press, Princeton (1964). Original: W.A Benjamin 1964, 1978, 1980, Paperback: Princeton 2000Google Scholar
- 85.Thaller, B.: The Dirac Equation. Texts and Monographs in Physics. Springer, Berlin (1992)Google Scholar
- 86.Tonomura, A., Endo, J., Matsuda, T., Kawasaki, T., Exawa, H.: Demonstration of single-electron buildup of an interference pattern. Am. J. Phys.
**57**(2), 117–120 (1989)CrossRefGoogle Scholar - 87.Trefethen, L.N.: Cubature, approximation, and isotropy in the hypercube. SIAM Rev.
**59**(3), 469–491 (2017)MathSciNetCrossRefzbMATHGoogle Scholar - 88.Varadarajan, V.S.: The geometry of quantum theory, 2nd edn. Springer, New York (1985)zbMATHGoogle Scholar
- 89.van der Waerden, B.L. (ed.): Sources of Quantum Mechanics, No. V in Classics of Science. Dover Publications, New York (1968)Google Scholar
- 90.van der Waerden, B.L.: Group Theory and Quantum Mechanics, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 214. Springer, Berlin (1974). Translation of the German edition: Springer, 1932Google Scholar
- 91.Wallace, D.: Philosophy of Quantum Mechanics. In: Rickless [68], chap. 2, pp. 16–98Google Scholar
- 92.Weinberg, S.: The Quantum Theory of Fields: Foundations, vol. I. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
- 93.Wheeler, J.A., Zurek, W.H. (eds.): Quantum Theory and Measurement. Princeton Series in Physics. Princeton University Press, Princeton (1983)Google Scholar
- 94.Wiener, N.: Differential-space. J. Math. Phys.
**2**, 131–174 (1923). https://doi.org/10.1002/sapm192321131 CrossRefGoogle Scholar - 95.Wightman, A.S., Gårding, L.: Fields as operator-valued distributions. Arkiv för Fysik
**28**, 129–189 (1964). Published by Royal Swedish Academy of SciencesGoogle Scholar - 96.Zurek, W.H.: Quantum darwinism, classical reality, and the randomness of quantum jumps. Phys. Today
**67**(10), 44–50 (2014)CrossRefGoogle Scholar - 97.Zwanzig, R.: Nonequilibrium Statistical Mechanics. Oxford University Press, Oxford (2001)zbMATHGoogle Scholar