Advertisement

Two resonant quantum electrodynamics models of quantum measuring systems

  • Eiji KonishiEmail author
Regular Paper
  • 3 Downloads

Abstract

A quantum measurement scheme is suggested in two resonant models of quantum electrodynamics. The first model is the brain, where, for the propagation of its action potentials, the free electron laser-like coherence mechanism recently investigated by the author is comprehensively applied. The second model is an assembly of Preparata et al.’s coherence domains, in which we incorporate the quantum field theory of memory advocated by Umezawa et al. These two models are remarkably analogous.

Keywords

Measurement problem Quantum optics Resonance Coherence 

Notes

Supplementary material

References

  1. 1.
    Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954)CrossRefzbMATHGoogle Scholar
  2. 2.
    Colson, W.B.: Theory of a free electron laser. Phys. Lett. A 59, 187 (1976)CrossRefGoogle Scholar
  3. 3.
    Bonifacio, R., Pellegrini, C., Narducci, L.M.: Collective instabilities and high-gain regime free electron laser. Opt. Commun. 50, 373 (1984)CrossRefGoogle Scholar
  4. 4.
    McNeil, B.W.J., Thompson, N.R.: X-ray free-electron lasers. Nat. Photon. 4, 814 (2010)CrossRefGoogle Scholar
  5. 5.
    Konishi, E.: Wave–particle interactions in a resonant system of photons and ion-solvated water. Phys. Lett. A 381, 762 (2017)CrossRefzbMATHGoogle Scholar
  6. 6.
    Konishi, E.: Corrigendum to “Wave-particle interactions in a resonant system ofphotons and ion-solvated water” [Phys. Lett. A 381 (2017) 762–766]. Phys. Lett. A 382, 1131 (2018)Google Scholar
  7. 7.
    Konishi, E.: arXiv:1811.02857
  8. 8.
    Preparata, G.: QED Coherence in Matter. World Scientific, Singapore (1995)CrossRefGoogle Scholar
  9. 9.
    Enz, C.P.: On Preparata’s theory of a superradiant phase transition. Helv. Phys. Acta 70, 141 (1997)zbMATHGoogle Scholar
  10. 10.
    Preparata, G.: Quantum field theory of the free-electron laser. Phys. Rev. A 38, 233 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Del Giudice, E., Preparata, G., Vitiello, G.: Water as a free electric dipole laser. Phys. Rev. Lett. 61, 1085 (1988)CrossRefGoogle Scholar
  12. 12.
    Preparata, G.: Quantum field theory of superradiance. In: Cherubini, R., et al. (eds.) Problems in Fundamental Modern Physics, pp. 303–341. World Scientific, Singapore (1990)Google Scholar
  13. 13.
    Hepp, K., Lieb, E.: On the superradiant phase transition for molecules in a quantized radiation field: the Dicke maser model. Ann. Phys. 76, 360 (1973)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hepp, K., Lieb, E.: Equilibrium statistical mechanics of matter interacting with the quantized radiation field. Phys. Rev. A 8, 2517 (1973)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Rzazewski, K., Wodkiewics, K., Zakowics, W.: Phase transitions, two-level atoms, and the \(A^2\) term. Phys. Rev. Lett. 35, 432 (1975)CrossRefGoogle Scholar
  16. 16.
    Bialynicki-Birula, I., Rzazewski, K.: No-go theorem concerning the superradiant phase transition in atomic systems. Phys. Rev. A 19, 301 (1979)CrossRefGoogle Scholar
  17. 17.
    Umezawa, H.: Advanced Field Theory: Micro, Macro and Thermal Physics. American Institute of Physics, New York (1993)Google Scholar
  18. 18.
    Ricciardi, L.H., Umezawa, H.: Brain and physics of many-body problems. Kybernetik 4, 44 (1967)CrossRefGoogle Scholar
  19. 19.
    Stuart, C.I.J.M., Takahashi, Y., Umezawa, H.: On the stability and non-local properties of memory. J. Theor. Biol. 71, 605 (1978)CrossRefGoogle Scholar
  20. 20.
    Stuart, C.I.J.M., Takahashi, Y., Umezawa, H.: Mixed-system brain dynamics: neural memory as a macroscopic ordered state. Found. Phys. 9, 301 (1979)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Vitiello, G.: Dissipation and memory capacity in the quantum brain model. Int. J. Mod. Phys. B 9, 973 (1995)CrossRefGoogle Scholar
  22. 22.
    Jibu, M., Pribram, K.H., Yasue, K.: From conscious experience to memory storage and retrieval: the role of quantum brain dynamics and boson condensation of evanescent photons. Int. J. Mod. Phys. B 10, 1735 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Shi, Y., Beck, T.L.: Length scales and interfacial potentials in ion hydration. J. Chem. Phys. 139, 044504 (2013)CrossRefGoogle Scholar
  24. 24.
    Allen, L., Eberly, J.H.: Optical Resonance and Two-Level Atoms. Wiley, New York (1975)Google Scholar
  25. 25.
    Kim, K.J.: Three-dimensional analysis of coherent amplification and self-amplified spontaneous emission in free-electron lasers. Phys. Rev. Lett. 57, 1871 (1986)CrossRefGoogle Scholar
  26. 26.
    Kandel, E.R., et al.: Principles of Neural Science, 5th edn. McGraw-Hill, New York (2012)Google Scholar
  27. 27.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500 (1952)CrossRefGoogle Scholar
  28. 28.
    Purves, D., et al.: Neuroscience, 5th edn. Sinauer, Sunderland (2012)Google Scholar
  29. 29.
    Lodish, H., et al.: Molecular Cell Biology, 8th edn. W. H. Freeman, New York (2016)Google Scholar
  30. 30.
    Waxman, S.G., Kocsis, J.D., Stys, P.K.: The Axon. Oxford University Press, New York (1995)CrossRefGoogle Scholar
  31. 31.
    Tegmark, M.: Importance of quantum decoherence in brain processes. Phys. Rev. E 61, 4194 (2000)CrossRefGoogle Scholar
  32. 32.
    Araki, H.: A remark on Machida–Namiki theory of measurement. Prog. Theor. Phys. 64, 719 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Araki, H.: A continuous superselection rule as a model of classical measuring apparatus in quantum mechanics. In: Gorini, V., et al. (eds.) Fundamental Aspects of Quantum Theory, pp. 23–33. Plenum, New York (1986)CrossRefGoogle Scholar
  34. 34.
    Landau, L.: The theory of superfluidity of helium II. J. Phys. U.S.S.R 5, 71 (1941)zbMATHGoogle Scholar
  35. 35.
    Kronig, R., Thellung, A.: On the hydrodynamics of non-viscous fluids and the theory of helium II. Physica 18, 749 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Ziman, J.M.: Quantum hydrodynamics and the theory of liquid helium. Proc. R. Soc. A 219, 257 (1953)zbMATHGoogle Scholar
  37. 37.
    von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932)zbMATHGoogle Scholar
  38. 38.
    Hodgkin, A.L., Keynes, R.D.: The mobility and diffusion coefficient of potassium in giant axons from Sepia. J. Physiol. (Lond.) 119, 513 (1953)CrossRefGoogle Scholar
  39. 39.
    Corey, D.P., Hudspeth, A.J.: Response latency of vertebrate hair cells. Biophys. J. 26, 499 (1979)CrossRefGoogle Scholar
  40. 40.
    Corey, D.P., Hudspeth, A.J.: Ionic basis of the receptor potential in a vertebrate hair cell. Nature 281, 675 (1979)CrossRefGoogle Scholar
  41. 41.
    Holt, J.R., Corey, D.P.: Two mechanisms for transducer adaptation in vertebrate hair cells. Proc. Natl. Acad. Sci. 97, 11730 (2000)CrossRefGoogle Scholar
  42. 42.
    Flock, A.: Sensory transduction in hair cells. In: Cone, R.A., et al. (eds.) Principles of Receptor Physiology, pp. 396–441. Springer, Berlin (1971)CrossRefGoogle Scholar
  43. 43.
    Ikeda, K., Morizono, T.: Electrochemical aspects of cations in the cochlear hair cell of the chinchilla: a cellular model of the ion movement. Eur. Arch. Otorhinolaryngol 247, 43 (1990)CrossRefGoogle Scholar
  44. 44.
    Ozawa, M.: Quantum mechanical measurements and Boolean valued analysis. J. Jpn. Assoc. Philos. Sci. 18, 35 (1986)Google Scholar
  45. 45.
    Konishi, E.: arXiv:1601.07623
  46. 46.
    Konishi, E.: Work required for selective quantum measurement. J. Stat. Mech. 063403 (2018)Google Scholar
  47. 47.
    Hameroff, S.R., Penrose, R.: Orchestrated reduction of quantum coherence in brain microtubules: a model for consciousness. Math. Comput. Simulat. 40, 453 (1996)CrossRefGoogle Scholar
  48. 48.
    Hameroff, S.R., Penrose, R.: Conscious events as orchestrated space-time selections. J. Conscious. Stud. 3, 36 (1996)Google Scholar
  49. 49.
    Freeman, W.J., Vitiello, G.: Nonlinear brain dynamics as macroscopic manifestation of underlying many-body field dynamics. Phys. Life. Rev. 3, 93 (2006)CrossRefGoogle Scholar
  50. 50.
    Hameroff, S.R., Penrose, R.: Consciousness in the universe: a review of the ’Orch OR’ theory. Phys. Life. Rev. 11, 39 (2014)CrossRefGoogle Scholar
  51. 51.
    Sivasubramanian, S., Widom, A., Srivastava, Y.N.: Gauge invariant formulations of Dicke–Preparata super-radiant models. Physica A 301, 241 (2001)CrossRefzbMATHGoogle Scholar
  52. 52.
    Del Giudice, E., De Ninno, A., Fleischmann, M., Mengoli, G., Milani, M., Talpo, G., Vitiello, G.: Coherent quantum electrodynamics in living matter. Electromagn. Biol. Med. 24, 199 (2005)CrossRefGoogle Scholar
  53. 53.
    Del Giudice, E., Preparata, G.: Coherent dynamics in water as a possible explanation of biological membranes formation. J. Biol. Phys. 20, 105 (1994)CrossRefGoogle Scholar
  54. 54.
    Arani, R., Bono, I., Del Giudice, E., Preparata, G.: QED coherence and the thermodynamics of water. Int. J. Mod. Phys. B 9, 1813 (1995)CrossRefGoogle Scholar
  55. 55.
    Loudon, R.: The Quantum Theory of Light. Clarendon, Oxford (1985)zbMATHGoogle Scholar
  56. 56.
    Yasue, K., Takahashi, Y.: An Introduction to Quantum Field Brain Theory. Japanese. Saiensu-sha, Tokyo (2003)Google Scholar
  57. 57.
    Matsumoto, H., Oberlechner, G., Umezawa, M., Umezawa, H.: Quantum soliton and classical soliton. J. Math. Phys. 20, 2088 (1979)CrossRefGoogle Scholar
  58. 58.
    Matsumoto, H., Semenoff, G., Umezawa, H., Umezawa, M.: Extended objects in quantum field theory. J. Math. Phys. 21, 1761 (1980)CrossRefzbMATHGoogle Scholar
  59. 59.
    Matsumoto, H., Papastamatiou, N.J., Semenoff, G., Umezawa, H.: Asymptotic condition and Hamiltonian in quantum field theory with extended objects. Phys. Rev. D 24, 406 (1981)CrossRefGoogle Scholar
  60. 60.
    Del Giudice, E., Doglia, S., Milani, M., Vitiello, G.: A quantum field theoretical approach to the collective behaviour of biological systems. Nucl. Phys. B 251, 375 (1985)CrossRefGoogle Scholar
  61. 61.
    Del Giudice, E., Doglia, S., Milani, M., Vitiello, G.: Electromagnetic field and spontaneous symmetry breaking in biological matter. Nucl. Phys. B 275, 185 (1986)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Lieb, E.H., Robinson, D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251 (1972)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Cheneau, M., et al.: Light-cone-like spreading of correlations in a quantum many-body system. Nature 481, 484 (2012)CrossRefGoogle Scholar

Copyright information

© Chapman University 2019

Authors and Affiliations

  1. 1.Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan

Personalised recommendations