Advertisement

Quantum Studies: Mathematics and Foundations

, Volume 6, Issue 4, pp 397–430 | Cite as

Gaussian quadrature inference for multicarrier continuous-variable quantum key distribution

  • Laszlo GyongyosiEmail author
  • Sandor Imre
Regular Paper

Abstract

A multicarrier continuous-variable quantum key distribution (CVQKD) protocol utilizes Gaussian subcarrier quantum continuous variables (CV) for information transmission. Here, we propose the Gaussian quadrature inference (GQI) method for multicarrier continuous-variable quantum key distribution. The GQI framework provides a minimal error estimate of the quadratures of the CV quantum states from the measured noisy subcarrier variables. GQI utilizes the fundamentals of regularization theory and statistical information processing. We characterize GQI for multicarrier CVQKD, and define a method for the statistical modeling and processing of noisy Gaussian subcarrier quadratures. We introduce the terms statistical secret key rate and statistical private classical information. The framework can be established in an arbitrary CVQKD protocol and measurement setting, and implementable by standard low-complexity statistical functions.

Keywords

Quantum key distribution Quantum continuous variables Quantum cryptography 

Notes

Acknowledgements

This work was partially supported by the National Research Development and Innovation Office of Hungary (Project No. 2017-1.2.1-NKP-2017-00001), by the Hungarian Scientific Research Fund - OTKA K-112125 and in part by the BME Artificial Intelligence FIKP grant of EMMI (BME FIKP-MI/SC).

Author Contributions

LGY designed the protocol and wrote the manuscript. LGY and SI analyzed the results. All authors reviewed the manuscript.

Funding

No relevant funding.

Compliance with ethical standards

Ethics statement

This work did not involve any active collection of human data

Data accessibility statement

This work does not have any experimental data.

Competing financial interests statement

We have no competing financial interests.

Competing interests statement

We have no competing interests.

Supplementary material

40509_2019_183_MOESM1_ESM.pdf (127 kb)
Supplementary material 1 (pdf 126 KB)

References

  1. 1.
    Pirandola, S., Mancini, S., Lloyd, S., Braunstein, S.L.: Continuous-variable quantum cryptography using two-way quantum communication. Nat. Phys. 4, 726–730 (2008)CrossRefGoogle Scholar
  2. 2.
    Grosshans, F., Cerf, N.J., Wenger, J., Tualle-Brouri, R., Grangier, P.: Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables. Quant. Info. Comput. 3, 535–552 (2003)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Navascues, M., Acin, A.: Security bounds for continuous variables quantum key distribution. Phys. Rev. Lett. 94, 020505 (2005)CrossRefGoogle Scholar
  4. 4.
    Gyongyosi, L., Imre, S., Nguyen, H.V.: A survey on quantum channel capacities. IEEE Commun. Surv. Tutor. 99, 1 (2018).  https://doi.org/10.1109/COMST.2017.2786748 CrossRefGoogle Scholar
  5. 5.
    Gyongyosi, L., Imre, S.: Gaussian quadrature inference for multicarrier continuous-variable quantum key distribution. In: SPIE Quantum Information and Computation XIV, 17–21 Apr 2016. Baltimore, Maryland, USA (2016)Google Scholar
  6. 6.
    Gyongyosi, L., Imre, S.: Secret key rate proof of multicarrier continuous-variable quantum key distribution. Int. J. Commun. Syst. (Wiley).  https://doi.org/10.1002/dac.3865 (2018)
  7. 7.
    Gyongyosi, L., Imre, S.: Multiple Access Multicarrier Continuous-Variable Quantum Key Distribution, Chaos, Solitons and Fractals. Elsevier, New York.  https://doi.org/10.1016/j.chaos.2018.07.006 (ISSN: 0960-0779) (2018)
  8. 8.
    Grosshans, F., et al.: Quantum key distribution using Gaussian-modulated coherent states. Nature 421, 238–241 (2003)CrossRefGoogle Scholar
  9. 9.
    Pirandola, S., Garcia-Patron, R., Braunstein, S.L., Lloyd, S.: Phys. Rev. Lett. 102, 050503 (2009)Google Scholar
  10. 10.
    Pirandola, S., Serafini, A., Lloyd, S.: Phys. Rev. A 79, 052327 (2009)Google Scholar
  11. 11.
    Pirandola, S., Braunstein, S.L., Lloyd, S.: Phys. Rev. Lett. 101, 200504 (2008)Google Scholar
  12. 12.
    Weedbrook, C., Pirandola, S., Lloyd, S., Ralph, T.: Phys. Rev. Lett. 105, 110501 (2010)Google Scholar
  13. 13.
    Weedbrook, C., Pirandola, S., Garcia-Patron, R., Cerf, N.J., Ralph, T., Shapiro, J., Lloyd, S.: Rev. Mod. Phys. 84, 621 (2012)Google Scholar
  14. 14.
    Shieh, W., Djordjevic, I.: OFDM for Optical Communications. Elsevier, New York (2010)Google Scholar
  15. 15.
    Gyongyosi, L., Imre, S.: Geometrical Analysis of Physically Allowed Quantum Cloning Transformations for Quantum Cryptography, Information Sciences. Elsevier, New York, pp. 1–23.  https://doi.org/10.1016/j.ins.2014.07.010 (2014)
  16. 16.
    Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. arXiv:1210.6216v1 (2012)
  17. 17.
    Navascues, M., Grosshans, F., Acin, A.: Optimality of Gaussian attacks in continuous-variable quantum cryptography. Phys. Rev. Lett. 97, 190502 (2006)CrossRefGoogle Scholar
  18. 18.
    Garcia-Patron, R., Cerf, N.J.: Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97, 190503 (2006)CrossRefGoogle Scholar
  19. 19.
    Grosshans, F.: Collective attacks and unconditional security in continuous variable quantum key distribution. Phys. Rev. Lett. 94, 020504 (2005)CrossRefGoogle Scholar
  20. 20.
    Adcock, M.R.A., Hoyer, P., Sanders, B.C.: Limitations on continuous-variable quantum algorithms with Fourier transforms. New J. Phys. 11, 103035 (2009)CrossRefGoogle Scholar
  21. 21.
    Gyongyosi, L., Imre, S.: Proceedings Volume 8997, Advances in Photonics of Quantum Computing, Memory, and Communication VII; 89970C.  https://doi.org/10.1117/12.2038532 (2014)
  22. 22.
    Imre, S., Gyongyosi, L.: Advanced Quantum Communications—An Engineering Approach. Wiley, New Jersey (2012)CrossRefGoogle Scholar
  23. 23.
    Tse, D., Viswanath, P.: Fundamentals of Wireless Communication. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  24. 24.
    Middlet, D.: An Introduction to Statistical Communication Theory: An IEEE Press Classic Reissue, Hardcover, IEEE (ISBN-10: 0780311787, ISBN-13: 978-0780311787) (1960)Google Scholar
  25. 25.
    Kay, S.: Fundamentals of Statistical Signal Processing, vol. I-III. Prentice Hall, Upper Saddle River (2013)Google Scholar
  26. 26.
    Jahromi, O.S.: Multirate Statistical Signal Processing. Springer, Berlin (2007). ISBN-10 1–4020-5316-9zbMATHGoogle Scholar
  27. 27.
    Heinzel, G., Rudiger, A., Schilling, R.: Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), including a comprehensive list of window functions and some new at-top windows. http://hdl.handle.net/11858/00-001M-0000-0013-557A-5 (2002)
  28. 28.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge (1993). ISBN : 0-521-43108-5,zbMATHGoogle Scholar
  29. 29.
    Imre, S., Balazs, F.: Quantum Computing and Communications—An Engineering Approach, p. 283. Wiley, New York (2005). ISBN 0-470-86902-XGoogle Scholar
  30. 30.
    Petz, D.: Quantum Information Theory and Quantum Statistics. Springer, Heidelberg (2008). Hiv: 6zbMATHGoogle Scholar
  31. 31.
    Gyongyosi, L., Imre, S.: Long-distance Continuous-Variable Quantum Key Distribution with Advanced Reconciliation of a Gaussian Modulation. In: Proceedings of SPIE Photonics West OPTO 2013 (2013)Google Scholar
  32. 32.
    Pirandola, S.: Capacities of repeater-assisted quantum communications. arXiv:1601.00966 (2016)
  33. 33.
    Gyongyosi, L., Imre, S.: Entanglement-Gradient Routing for Quantum Networks. Science Report Nature (2017)Google Scholar
  34. 34.
    Gyongyosi, L., Imre, S.: Entanglement Availability Differentiation Service for the Quantum Internet. Sci. Rep., Nature  https://doi.org/10.1038/s41598-018-28801-3 (2018)
  35. 35.
    Biamonte, J., et al.: Quantum Machine Learning. Nature 549, 195–202 (2017)CrossRefGoogle Scholar
  36. 36.
    Laudenbach, F., Pacher, C., Fred Fung, C.-H., Poppe, A., Peev, M., Schrenk, B., Hentschel, M., Walther, P., Hubel, H.: Continuous-Variable Quantum Key Distribution with Gaussian Modulation—The Theory of Practical Implementations. Adv. Quantum Technol. 1800011 (2018)Google Scholar
  37. 37.
    Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995)CrossRefGoogle Scholar
  38. 38.
    Kimble, H.J.: The quantum Internet. Nature 453, 1023–1030 (2008)CrossRefGoogle Scholar
  39. 39.
    Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 15043.  https://doi.org/10.1038/ncomms15043 (2017)
  40. 40.
    Pirandola, S., Braunstein, S.L., Laurenza, R., Ottaviani, C., Cope, T.P.W., Spedalieri, G., Banchi, L.: Theory of channel simulation and bounds for private communication. Quant. Sci. Technol. 3, 035009 (2018)CrossRefGoogle Scholar
  41. 41.
    Laurenza, R., Pirandola, S.: General bounds for sender-receiver capacities in multipoint quantum communications. Phys. Rev. A 96, 032318 (2017)CrossRefGoogle Scholar
  42. 42.
    Bacsardi, L.: On the way to quantum-based satellite communication. IEEE Comm. Mag. 51(08), 50–55 (2013)CrossRefGoogle Scholar
  43. 43.
    Gyongyosi, L., Imre, S.: Low-dimensional reconciliation for continuous-variable quantum key distribution. Appl. Sci.  https://doi.org/10.3390/app8010087 (ISSN 2076-3417) (2018)
  44. 44.
    Gyongyosi, L.: Diversity extraction for multicarrier continuous-variable quantum key distribution. In: Proceedings of the 2016 24th European Signal Processing Conference (EUSIPCO 2016) (2016)Google Scholar
  45. 45.
    Gyongyosi, L., Imre, S.: Eigenchannel decomposition for continuous-variable quantum key distribution. In: Proceedings Volume 9377, Advances in Photonics of Quantum Computing, Memory, and Communication VIII; 937711.  https://doi.org/10.1117/12.2076532 (2015)
  46. 46.
    Lloyd, S.: Capacity of the noisy quantum channel. Phys. Rev. A 55, 1613–1622 (1997)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Lloyd, S., Shapiro, J.H., Wong, F.N.C., Kumar, P., Shahriar, S.M., Yuen, H.P.: Infrastructure for the quantum internet. ACM SIGCOMM Comput. Commun. Rev. 34, 9–20 (2004)CrossRefGoogle Scholar
  48. 48.
    Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning. arXiv:1307.0411 (2013)
  49. 49.
    Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10, 631 (2014)CrossRefGoogle Scholar
  50. 50.
    Muralidharan, S., Kim, J., Lutkenhaus, N., Lukin, M.D., Jiang, L.: Ultrafast and fault-tolerant quantum communication across long distances. Phys. Rev. Lett 112, 250501 (2014)CrossRefGoogle Scholar
  51. 51.
    Kiktenko, E.O., Pozhar, N.O., Anufriev, M.N., Trushechkin, A.S., Yunusov, R.R., Kurochkin, Y.V., Lvovsky, A.I., Fedorov, A.K.: Quantum-secured blockchain. Quant. Sci. Technol. 3, 035004 (2018)CrossRefGoogle Scholar
  52. 52.
    Gyongyosi, L., Imre, S.: Decentralized Base-graph Routing for the Quantum Internet, Physical Review A. American Physical Society, pp. 10–20 (2018)Google Scholar
  53. 53.
    Van Meter, R.: Quantum Networking. Wiley, New York (2014). ISBN 1118648927, 9781118648926CrossRefGoogle Scholar
  54. 54.
    Gyongyosi, L., Imre, S.: Singular layer transmission for continuous-variable quantum key distribution. In: IEEE Photonics Conference (IPC) 2014, IEEE.  https://doi.org/10.1109/IPCon.2014.6995246 (2014)
  55. 55.
    Gyongyosi, L., Imre, S.: Proc. SPIE 9377. In: Advances in Photonics of Quantum Computing, Memory, and Communication VIII, 9377110.  https://doi.org/10.1117/12.2076532 (2015)
  56. 56.
  57. 57.
    Gyongyosi, L., Imre, S.: Adaptive multicarrier quadrature division modulation for long-distance continuous-variable quantum key distribution. In: Proc. SPIE 9123, Quantum Information and Computation XII, 912307.  https://doi.org/10.1117/12.2050095. From Conference Volume 9123, Quantum Information and Computation XII, Baltimore, Maryland, USA (2014)
  58. 58.
    Gyongyosi, L., Imre, S.: Adaptive Gaussian Quadrature Detection for Continuous-Variable Quantum Key Distribution, SPIE Photonics WestOPTO 2016 Proceedings. In: Advances in Photonics of Quantum Computing, Memory, and Communication IX,  https://doi.org/10.1117/12.2211743 (2015)
  59. 59.
    Wang, K., Yu, X.T., Lu, S.L., Gong, Y.X.: Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation. Phys. Rev A 89, 022329 (2014)CrossRefGoogle Scholar

Copyright information

© Chapman University 2019

Authors and Affiliations

  1. 1.School of Electronics and Computer ScienceUniversity of SouthamptonSouthamptonUK
  2. 2.Department of Networked Systems and ServicesBudapest University of Technology and EconomicsBudapestHungary
  3. 3.MTA-BME Information Systems Research GroupHungarian Academy of SciencesBudapestHungary

Personalised recommendations