Advertisement

Identification and characterization of miRNAs during flag leaf senescence in rice by high-throughput sequencing

  • Jyothish Madambikattil Sasi
  • Cheeni Vijaya Kumar
  • Balaji Mani
  • Ankur R. Bhardwaj
  • Manu Agarwal
  • Surekha Katiyar-AgarwalEmail author
Original Article
  • 24 Downloads

Abstract

Flag leaf is the last leaf to senesce and its life span plays a critical role in determining grain quality and yield in rice. Little is known about the molecular changes that occur and their regulation in time-dependent manner during flag leaf senescence in rice. Several studies have explored different aspects of miRNA functions in plant development; however, a diminutive account is available about their role in flag leaf senescence. With an aim to unravel the role of miRNAs in ageing of flag leaf in rice, four small RNA libraries were prepared from three stages of senescence and sequenced by Illumina deep sequencing technology. Thirty-eight known and 494 novel miRNAs were identified in the senescing flag leaves. Digital expression analysis revealed that 21 known and 116 novel miRNAs were differentially expressed during senescence. Family member(s) of miR156, miR159, miR160, miR164, miR169, miR171, miR393, miR396, miR535, miR827, miR1428, miR1432 and miR1861 were differentially expressed in at least one stage of flag leaf senescence. The present study has generated a repository of senescence-related miRNAs that can be utilized to contemplate molecular approaches for manipulating the timing of flag leaf senescence in rice and other related crops.

Keywords

Rice Flag leaf senescence Small RNA miRNAs High throughput sequencing qPCR 

Notes

Acknowledgements

JMS and CVK are thankful for research fellowships from University Grants Commission (UGC), India. R&D grants from DBT, DST-PURSE and University of Delhi are acknowledged. We thank Gopal Joshi for helping with submission of small RNA sequencing data to SRA database. Deep sequencing was carried out by DBT-funded High-Throughput Sequencing Facility at University of Delhi South Campus, New Delhi, India.

Supplementary material

40502_2019_436_MOESM1_ESM.xlsx (14 kb)
Supplementary material 1 (XLSX 13 kb)
40502_2019_436_MOESM2_ESM.docx (115 kb)
Supplementary material 2 (DOCX 114 kb)
40502_2019_436_MOESM3_ESM.xlsx (105 kb)
Supplementary material 3 (XLSX 105 kb)
40502_2019_436_MOESM4_ESM.xlsx (1.2 mb)
Supplementary material 4 (XLSX 1235 kb)

References

  1. Alonso, J. M., Hirayama, T., Roman, G., Nourizadeh, S., & Ecker, J. R. (1999). EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science, 284, 2148–2152.CrossRefGoogle Scholar
  2. Aya, K., Ueguchi-Tanaka, M., Kondo, M., Hamada, K., Yano, K., Nishimura, M., et al. (2009). Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell, 21, 1453–1472.CrossRefGoogle Scholar
  3. Breeze, E., et al. (2011). High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell, 23, 873–894.CrossRefGoogle Scholar
  4. Buchanan-Wollaston, V., Earl, S., Harrison, E., Mathas, E., Navabpour, S., Page, T., et al. (2003). The molecular analysis of leaf senescence–a genomics approach. Plant Biotechnology Journal, 1, 3–22.CrossRefGoogle Scholar
  5. Burman, N., Bhatnagar, A., & Khurana, J. P. (2018). OsbZIP48, a HY5 transcription factor ortholog, exerts pleiotropic effects in light-regulated development. Plant Physiology, 176, 1262–1285.CrossRefGoogle Scholar
  6. Chen, M., Maodzeka, A., Zhou, L., Ali, E., Wang, Z., & Jiang, L. (2014). Removal of DELLA repression promotes leaf senescence in Arabidopsis. Plant Science, 219–220, 26–34.CrossRefGoogle Scholar
  7. Chomzynski, P., & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Analytical Biochemistry, 162, 156–159.CrossRefGoogle Scholar
  8. Dhondt, S., Coppens, F., De Winter, F., Swarup, K., Merks, R. M. H., Inze, D., et al. (2010). SHORT-ROOT and SCARECROW regulate leaf growth in Arabidopsis by stimulating S-phase progression of the cell cycle. Plant Physiology, 154, 1183–1195.CrossRefGoogle Scholar
  9. Djami-Tchatchou, A. T., Sanan-Mishra, N., Ntushelo, K., & Dubery, I. A. (2017). Functional roles of microRNAs in Agronomically important plants—potential as targets for crop improvement and protection. Frontiers in Plant Science, 8, 378.CrossRefGoogle Scholar
  10. Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., et al. (2012). Phytozome: A comparative platform for green plant genomics. Nucleic Acids Research, 40, 1178–1186.CrossRefGoogle Scholar
  11. Grbic, V., & Bleecker, A. B. (1995). Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant J., 8, 595–602.CrossRefGoogle Scholar
  12. Guo, Y., Cai, Z., & Gan, S. (2004). Transcriptome of Arabidopsis leaf senescence. Plant, Cell and Environment, 27, 521–549.CrossRefGoogle Scholar
  13. Guo, Y., & Gan, S. (2005). Leaf senescence: Signals, execution, and regulation. Current Topics in Developmental Biology, 71, 83–112.CrossRefGoogle Scholar
  14. Huang, C. K., Lo, P. C., Huang, L. F., Wu, S. J., Yeh, C. H., & Lu, C. A. (2015). A single-repeat MYB transcription repressor, MYBH, participates in regulation of leaf senescence in Arabidopsis. Plant Molecular Biology, 88, 269–286.CrossRefGoogle Scholar
  15. Jibran, R., Hunter, D. A., & Dijkwel, P. P. (2013). Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Molecular Biology, 82, 547–561.CrossRefGoogle Scholar
  16. Kam, J., Gresshoff, P., Shorter, R., & Xue, G. P. (2007). Expression analysis of RING zinc finger genes from Triticum aestivum and identification of TaRZF70 that contains four RING-H2 domains and differentially responds to water deficit between leaf and root. Plant Science, 173, 650–659.CrossRefGoogle Scholar
  17. Kanneganti, V., & Gupta, A. K. (2008). Wall associated kinases from plants—an overview. Physiology and Molecular Biology of Plants, 14, 109–118.CrossRefGoogle Scholar
  18. Kawahara, Y., et al. (2013). Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice, 6, 1–10.CrossRefGoogle Scholar
  19. Kim, J., Chang, C., & Tucker, M. L. (2015). To grow old: Regulatory role of ethylene and jasmonic acid in senescence. Frontiers in Plant Science, 6, 1–7.Google Scholar
  20. Kim, H., Kim, H. J., Vu, Q. T., Jung, S., McClung, C. R., Hong, S., et al. (2018). Circadian control of ORE1 by PRR9 positively regulates leaf senescence in Arabidopsis. Proceedings of the National Academy of Sciences, 115, 8448–8453.CrossRefGoogle Scholar
  21. Kim, J. I., Murphy, A. S., Baek, D., Lee, S. W., Yun, D. J., Bressan, R. A., et al. (2011). YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana. Journal of Experimental Botany, 62, 3981–3992.CrossRefGoogle Scholar
  22. Kim, J. H., Woo, H. R., Kim, J., Lim, P. O., Lee, I. C., Choi, S. H., et al. (2009). Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science, 323, 1053–1057.CrossRefGoogle Scholar
  23. Koyama, T. (2014). The roles of ethylene and transcription factors in the regulation of onset of leaf senescence. Frontiers in Plant Science, 5, 650.CrossRefGoogle Scholar
  24. Koyama, T., Nii, H., Mitsuda, N., Ohta, M., Kitajima, S., Ohme-Takagi, M., et al. (2013). A regulatory cascade involving class II ETHYLENE RESPONSE FACTOR transcriptional repressors operates in the progression of leaf senescence. Plant Physiology, 162, 991–1005.CrossRefGoogle Scholar
  25. Leng, Y., Ye, G., & Zeng, D. (2017). Genetic dissection of leaf senescence in rice. International Journal of Molecular Sciences, 18, 2686.CrossRefGoogle Scholar
  26. Lim, P. O., Kim, H. J., & Gil Nam, H. (2007). Leaf senescence. Annual Review of Plant Biology, 58, 115–136.CrossRefGoogle Scholar
  27. Lim, P. O., Lee, I. C., Kim, J., Kim, H. J., Ryu, J. S., Woo, H. R., et al. (2010). Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity. Journal of Experimental Botany, 61, 1419–1430.CrossRefGoogle Scholar
  28. Lin, M., Pang, C., Fan, S., Song, M., Wei, H., & Yu, S. (2015). Global analysis of the Gossypium hirsutum L. Transcriptome during leaf senescence by RNA-Seq. BMC Plant Biology, 15, 43.CrossRefGoogle Scholar
  29. Liu, M., Yu, H., Zhao, G., Huang, Q., Lu, Y., & Ouyang, B. (2017). Profiling of drought-responsive microRNA and mRNA in tomato using high-throughput sequencing. BMC Genomics, 18, 1–18.CrossRefGoogle Scholar
  30. Liu, L., Zhou, E. Y., Zhou, E. G., Ye, R., Zhao, E. L., Li, X., et al. (2008). Identification of early senescence-associated genes in rice flag leaves. Plant Molecular Biology, 67, 37–55.CrossRefGoogle Scholar
  31. Luquez, V. M., & Guiamét, J. J. (2001). Effects of the “stay green” genotype GGd1d1d2d2 on leaf gas exchange, dry matter accumulation and seed yield in soybean (Glycine max L. Merr.). Annals of Botany, 87, 313–318.CrossRefGoogle Scholar
  32. Mannai, Y., Akabane, K., Hiratsu, K., Satoh-Nagasawa, N., & Wabiko, H. (2017). The NAC transcription factor gene OsY37 (ONAC011) promotes leaf senescence and accelerates heading time in rice. International Journal of Molecular Sciences, 18, 2165.CrossRefGoogle Scholar
  33. Mao, C., Lu, S., Lv, B., Zhang, B., Shen, J., He, J., et al. (2017). A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis. Plant Physiology, 174, 1747–1763.CrossRefGoogle Scholar
  34. Meyers, B. C., et al. (2008). Criteria for annotation of plant MicroRNAs. Plant Cell, 20, 3186–3190.CrossRefGoogle Scholar
  35. Moore, B., Zhou, L., Rolland, F., Hall, Q., Cheng, W.-H., Liu, Y.-X., et al. (2003). Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science, 300, 332–336.CrossRefGoogle Scholar
  36. Morris, K., MacKerness, S. A., Page, T., John, C. F., Murphy, A. M., Carr, J. P., et al. (2000). Salicylic acid has a role in regulating gene expression during leaf senescence. Plant Journal, 23, 677–685.CrossRefGoogle Scholar
  37. Park, S.-Y., et al. (2007). The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell, 19, 1649–1664.CrossRefGoogle Scholar
  38. Pourtau, N., Mares, M., Purdy, S., Quentin, N., Ruel, A., & Wingler, A. (2004). Interactions of abscisic acid and sugar signalling in the regulation of leaf senescence. Planta, 219, 765–772.CrossRefGoogle Scholar
  39. Rajagopalan, R., Vaucheret, H., Trejo, J., & Bartel, D. P. (2006). A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes & Development, 20, 3407–3425.CrossRefGoogle Scholar
  40. Rampino, P., Pataleo, S., Gerardi, C., Mita, G., & Perrotta, C. (2006). Drought stress response in wheat: Physiological and molecular analysis of resistant and sensitive genotypes. Plant, Cell and Environment, 29, 2143–2152.CrossRefGoogle Scholar
  41. Sakuraba, Y., Jeong, J., Kang, M.-Y., Kim, J., Paek, N.-C., & Choi, G. (2014). Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. Nature Communications, 5, 4636.CrossRefGoogle Scholar
  42. Schippers, J. H. M., Jing, H.-C., Hille, J., & Dijkwel, P. P. (2007). Developmental and hormonal control of leaf senescence. In S. Gan (Ed.), Senescence processes in plants (pp. 145–170). Oxford: Blackwell Publishing Ltd.CrossRefGoogle Scholar
  43. Schommer, C., Palatnik, J. F., Aggarwal, P., Chételat, A., Cubas, P., Farmer, E. E., et al. (2008). Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biology, 6, e230.CrossRefGoogle Scholar
  44. Shriram, V., Kumar, V., Devarumath, R. M., Khare, T. S., & Wani, S. H. (2016). MicroRNAs as potential targets for abiotic stress tolerance in plants. Frontiers in Plant Science, 7, 1–18.CrossRefGoogle Scholar
  45. Stefanowicz, K., Lannoo, N., & Van Damme, E. J. M. (2015). Plant F-box proteins—judges between life and death. Critical Review Plant Sciences, 34, 523–552.CrossRefGoogle Scholar
  46. Stocks, M. B., Moxon, S., Mapleson, D., Woolfenden, H. C., Mohorianu, I., Folkes, L., et al. (2012). The UEA sRNA workbench: a suite of tools for analysing and visualizing next generation sequencing microRNA and small RNA datasets. Bioinformatics, 28, 2059–2061.CrossRefGoogle Scholar
  47. Veljović-Jovanović, S., Kukavica, B., Stevanović, B., & Navari-Izzo, F. (2006). Senescence- and drought-related changes in peroxidase and superoxide dismutase isoforms in leaves of Ramonda serbica. Journal of Experimental Botany, 57, 1759–1768.CrossRefGoogle Scholar
  48. Wu, X., Ding, D., Shi, C., Xue, Y., Zhang, Z., Tang, G., et al. (2016). microRNA-dependent gene regulatory networks in maize leaf senescence. BMC Plant Biology, 16, 73.CrossRefGoogle Scholar
  49. Xiao, D., Cui, Y., Xu, F., Xu, X., Gao, G., Wang, Y., et al. (2015). SENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE directly interacts with the cytoplasmic domain of SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE and negatively regulates leaf senescence in Arabidopsis. Plant Physiology, 169, 1275–1291.CrossRefGoogle Scholar
  50. Xie, Z., Johansen, L. K., Gustafson, A. M., Kasschau, K. D., Lellis, A. D., Zilberman, D., et al. (2004). Genetic and functional diversification of small RNA pathways in plants. PLoS Biology, 2, e104.CrossRefGoogle Scholar
  51. Xiong, Y. Y., Ma, J., He, Y. H., Lin, Z., Li, X., Yu, S. M., et al. (2018). High-throughput sequencing analysis revealed the regulation patterns of small RNAs on the development of A. comosus var. bracteatus leaves. Scientific Reports, 8, 1–11.CrossRefGoogle Scholar
  52. Xu, X., Bai, H., Liu, C., Chen, E., Chen, Q., Zhuang, J., et al. (2014). Genome-wide analysis of microRNAs and their target genes related to leaf senescence of rice. PLoS ONE, 9, e114313.CrossRefGoogle Scholar
  53. Zeng, S., Liu, Y., Pan, L., Hayward, A., & Wang, Y. (2015). Identification and characterization of miRNAs in ripening fruit of Lycium barbarum L. using high-throughput sequencing. Frontiers in Plant Science, 6, 1–15.Google Scholar
  54. Zhang, X., Ju, H. W., Chung, M. S., Huang, P., Ahn, S. J., & Kim, C. S. (2011). The R-R-type MYB-like transcription factor, AtMYBL, is involved in promoting leaf senescence and modulates an abiotic stress response in Arabidopsis. Plant and Cell Physiology, 52, 138–148.CrossRefGoogle Scholar
  55. Zhang, W. Y., Xu, Y. C., Li, W. L., Yang, L., Yue, X., Zhang, X. S., et al. (2014). Transcriptional analyses of natural leaf senescence in maize. PLoS ONE, 9, e115617.CrossRefGoogle Scholar
  56. Zhou, X., Jiang, Y., & Yu, D. (2011). WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis. Molecular Cell, 31, 303–313.CrossRefGoogle Scholar
  57. Zhu, Q.-H., Spriggs, A., Matthew, L., Fan, L., Kennedy, G., Gubler, F., et al. (2008). A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Research, 18, 1456–1465.CrossRefGoogle Scholar
  58. Zou, C., Sun, K., Mackaluso, J. D., Seddon, A. E., Jin, R., Thomashow, M. F., et al. (2011). Cis-regulatory code of stress-responsive transcription in Arabidopsis thaliana. Proceedings of National Academy of Sciences, 108, 14992–14997.CrossRefGoogle Scholar

Copyright information

© Indian Society for Plant Physiology 2019

Authors and Affiliations

  • Jyothish Madambikattil Sasi
    • 1
  • Cheeni Vijaya Kumar
    • 1
  • Balaji Mani
    • 1
  • Ankur R. Bhardwaj
    • 3
  • Manu Agarwal
    • 2
  • Surekha Katiyar-Agarwal
    • 1
    Email author
  1. 1.Department of Plant Molecular BiologyUniversity of Delhi South CampusNew DelhiIndia
  2. 2.Department of BotanyUniversity of DelhiDelhiIndia
  3. 3.Department of Botany, Ramjas CollegeUniversity of DelhiDelhiIndia

Personalised recommendations