Accelerating the growth and flowering of Eustoma grandiflorum by foliar application of nano-ZnO and nano-CaCO3

  • Zeynab Seydmohammadi
  • Zeynab RoeinEmail author
  • Shirin Rezvanipour
Original Article


One of the important goals of lisianthus (cut flower) producers is to reduce the growth period and increase the quality of the flower. The current research aimed to investigate the effects of foliar application of nano ZnO and nano CaCO3 on growth and flowering of lisianthus (Eustoma grandiflorum cv. Mariachi Blue). The experiment was carried out in greenhouse condition by spraying various concentrations of nano ZnO (3, 6 and 9 mg L−1) and nano CaCO3 (250, 500 and 750 mg L−1) every 20 days. According to the results, foliar spraying of nano ZnO (6 mg L−1) on lisianthus increased number of leaf and lateral branches, leaf chlorophyll content and petal anthocyanin content. Nano ZnO spray also increased number of flowers. The results demonstrated that the plants sprayed with 500 mg L−1 nano CaCO3, entered the flowering stage earlier and flowered about 15 days earlier than the control plants, while foliar spraying of nano ZnO delayed the flowering time. Foliar spraying during the growth period with nano CaCO3 (500 mg L−1) increased the number of flowers per plant. Also, the number of flowers was 56.3% higher than the control treatment. An increase in plant size was observed with the use of nano CaCO3. Highest flower diameter, plant height and leaf length in lisianthus were obtained by foliar spraying of nano CaCO3. The present study showed that calcium carbonate and zinc oxide nano fertilizers have a significant effect on growth characteristics and flowering quality of lisianthus.


Flower size Flowering time Nano-fertilizer Nutrition Photosynthetic pigments 



This study was funded by the Ilam University.

Author contributions

Conception and design: [Zeynab Roein]; Material preparation, data collection: [Zeynab Seyedmohamadi]; Data analysis [Shirin Rezvanipour]; Writing-original draft preparation: [Zeynab Roein]; Reading and editing the final manuscript: [Zeynab Roein; Shirin Rezvanipour].


Funding was provided by Ilam University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Bala, R., Kalia, A., & Dhaliwal, S. S. (2019). Evaluation of efficacy of ZnO nanoparticles as remedial zinc nano-fertilizer for rice. Journal of Soil Science and Plant Nutrition, 19(2), 379–389.CrossRefGoogle Scholar
  2. Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., & Lux, A. (2007). Zinc in plants. New Phytologist, 173(4), 677–702.PubMedCrossRefGoogle Scholar
  3. da Silva, B. F., Pérez, S., Gardinalli, P., Singhal, R. K., Mozeto, A. A., & Barceló, D. (2011). Analytical chemistry of metallic nanoparticles in natural environments. TrAC Trends in Analytical Chemistry, 30(3), 528–540.CrossRefGoogle Scholar
  4. De Rosa, M. C., Monreal, C., Schnitzer, M., Walsh, R., & Sultan, Y. (2010). Nanotechnology in fertilizers. Nature Nanotechnology, 5(2), 91.CrossRefGoogle Scholar
  5. Dimkpa, C. O., Singh, U., Bindraban, P. S., Elmer, W. H., & Gardea, J. L. (2019). Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Science of the Total Environment, 688, 926–934.CrossRefGoogle Scholar
  6. Dolatabadian, A., Sanavy, S. A. M. M., Gholamhoseini, M., Joghan, A. K., Majdi, M., & Kashkooli, A. B. (2013). The role of calcium in improving photosynthesis and related physiological and biochemical attributes of spring wheat subjected to simulated acid rain. Physiology and Molecular Biology of Plants, 19(2), 189–198.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Dordas, C. (2009). Foliar application of calcium and magnesium improves growth, yield, and essential oil yield of oregano (Origanum vulgare spp. hirtum). Industrial Crops and Products, 29(2–3), 599–608.CrossRefGoogle Scholar
  8. Endres, L., da Cruz, S. J. S., Vilela, R. D., dos Santos, J. M., de Souza Barbosa, G. V., & Silva, J. A. C. (2016). Foliar applications of calcium reduce and delay sugarcane flowering. Bioenergy Research, 9(1), 98–108.CrossRefGoogle Scholar
  9. Farahat, M. M., Ibrahim, M. S., Taha, L. S., & El-Quesni, E. F. (2007). Response of vegetative growth and some chemical constituents of Cupressus sempervirens L. to foliar application of ascorbic acid and zinc at Nubaria. World Journal of Agricultural Sciences, 3(4), 496–502.Google Scholar
  10. Giusti, M. M., & Wrolstad, R. E. (2001). Characterization and measurement of anthocyanins by UV-visible spectroscopy. Current Protocols in Food Analytical Chemistry, 1, F1–F2.Google Scholar
  11. Hafeez, B., Khanif, Y. M., & Saleem, M. (2013). Role of zinc in plant nutrition—A review. American Journal of Experimental Agriculture, 3(2), 374.CrossRefGoogle Scholar
  12. Halevy, A. H. (1984). Evaluation of lisianthus as a new flower crop. Hort Science, 19, 845–847.Google Scholar
  13. Harbaugh, B. K. (1995). Flowering of Eustoma grandiflorum cultivars influenced by photoperiod and temperature. Hort Science, 30(7), 1375–1377.CrossRefGoogle Scholar
  14. Hashimoto, F., Nishimoto, S., Shimizu, K., & Sakata, Y. (2002). Flower growth, coloration and petal pigmentation in four lisianthus cultivars. Journal of the Japanese Society for Horticultural Science, 71(1), 40–47.CrossRefGoogle Scholar
  15. Hepler, P. K. (2005). Calcium: A central regulator of plant growth and development. The Plant Cell, 17(8), 2142–2155.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Hernández-Pérez, A., Valdez-Aguilar, L. A., Villegas-Torres, O. G., Alía-Tejacal, I., Trejo-Téllez, L. I., & Sainz-Aispuro, M. D. J. (2016). Effects of ammonium and calcium on lisianthus growth. Horticulture, Environment, and Biotechnology, 57(2), 123–131.CrossRefGoogle Scholar
  17. Hua, K. H., Wang, H. C., Chung, R. S., & Hsu, J. C. (2015). Calcium carbonate nanoparticles can enhance plant nutrition and insect pest tolerance. Journal of Pesticide Science, 40(4), 208–213.CrossRefGoogle Scholar
  18. Khalifa, R. K. H. M., Shaaban, S. H. A., & Rawia, A. (2011). Effect of foliar application of zinc sulfate and boric acid on growth, yield and chemical constituents of iris plants. Ozean Journal of Applied Sciences, 4(2), 129–144.Google Scholar
  19. Kisan, B., Shruthi, H., Sharanagouda, H., Revanappa, S. B., & Pramod, N. K. (2015). Effect of nano-zinc oxide on the leaf physical and nutritional quality of spinach. Agrotechnology, 4, 1–3.Google Scholar
  20. Kumar, S., & Haripriya, K. (2010). Effect of foliar application of iron and zinc on growth flowering and yield of Nerium (Nerium odorum L.). Plant Archives, 10(2), 637–640.Google Scholar
  21. Kumar, R., Sharma, S., Kaundal, M., Sharma, S., & Thakur, M. (2016). Response of damask rose (Rosa damascena Mill.) to foliar application of magnesium (Mg), copper (Cu) and zinc (Zn) sulphate under western Himalayas. Industrial Crops and Products, 83, 596–602.CrossRefGoogle Scholar
  22. Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and carotenoids: Measurement and characterization by UV–Vis spectroscopy. Current Protocols in Food Analytical Chemistry, 1(1), F4-3.Google Scholar
  23. Liu, X., Zhang, F., Zhang, S., He, X., Wang, R., Fei, Z., et al. (2005). Responses of peanut to nano-calcium carbonate. Plant Nutrition and Fertitizer Science, 11(3), 385–389.Google Scholar
  24. Marreiro, D., Cruz, K., Morais, J., Beserra, J., Severo, J., & de Oliveira, A. (2017). Zinc and oxidative stress: Current mechanisms. Antioxidants, 6(2), 24.PubMedCentralCrossRefPubMedGoogle Scholar
  25. Maurya, R., & Kumar, A. (2014). Effect of micronutrients on growth and corm yield of gladiolus. Plant Archives, 14(1), 529–531.Google Scholar
  26. Moreira, A., Moraes, L. A. C., & dos Reis, A. R. (2018). The molecular genetics of zinc uptake and utilization efficiency in crop plants. In M. A. Hossain, T. Kamiya, D. J. Burritt, L. S. Phan Tran, & T. Fujiwara (Eds.), Plant Micronutrient Use Efficiency (pp. 87–108). London, UK: Academic Press.CrossRefGoogle Scholar
  27. Ohkawa, K., Kano, A., Kanematsu, K., & Korenaga, M. (1991). Effects of air temperature and time on rosette formation in seedlings of Eustoma grandiflorum (Raf.) Shinn. Scientia Horticulturae, 48(1–2), 171–176.CrossRefGoogle Scholar
  28. Pandey, N., Gupta, B., & Pathak, G. C. (2013). Enhanced yield and nutritional enrichment of seeds of Pisum sativum L. through foliar application of zinc. Scientia Horticulturae, 164, 474–483.CrossRefGoogle Scholar
  29. Patle, P. N., Kadu, P. R., & Pharande, A. L. (2018). Nanotechnology: An emerging trend in soil science and plant nutrition research the review with an overarching approach. International Journal of Chemical Studies, 6(3), 1758–1760.Google Scholar
  30. Pavithra, G. J., Reddy, B. R., Salimath, M., Geetha, K. N., & Shankar, A. G. (2017). Zinc oxide nano particles increases Zn uptake, translocation in rice with positive effect on growth, yield and moisture stress tolerance. Indian Journal of Plant Physiology, 22(3), 287–294.CrossRefGoogle Scholar
  31. Rebbeck, J., & Scherzer, A. J. (2002). Growth responses of yellow-poplar (Liriodendron tulipifera L.) exposed to 5 years of O3 aloneor combined with elevated CO2. Plant, Cell and Environment, 25(11), 1527–1537.CrossRefGoogle Scholar
  32. Rizwan, M., Ali, S., Ali, B., Adrees, M., Arshad, M., Hussain, A., et al. (2019). Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere, 214, 269–277.PubMedCrossRefGoogle Scholar
  33. Rosrami Fard, S., Khourgami, A., Rafee, M., & Nasrollahi, H. (2012). Study the effect of zinc spraying and plant density on seed yield and morphological characteristics of Green gram. Annals of Biological Research, 3(8), 4166–4171.Google Scholar
  34. Rossi, L., Fedenia, L. N., Sharifan, H., Ma, X., & Lombardini, L. (2019). Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiology and Biochemistry, 135, 160–166.PubMedCrossRefGoogle Scholar
  35. Saeed, T., Hassan, I., Jilani, G., & Abbasi, N. A. (2013). Zinc augments the growth and floral attributes of gladiolus, and alleviates oxidative stress in cut flowers. Scientia Horticulturae, 164, 124–129.CrossRefGoogle Scholar
  36. Sarwar, M., Ayyub, C. M., Ahmad, W., Shafi, J., & Shafique, K. (2013). Modeling growth of cut-flower stock (Matthiola incana R. Br.) in response to differing in nutrient level. Universal Journal of Food and Nutrition Science, 1(1), 4–10.Google Scholar
  37. Savithramma, N. (2004). Influence of calcium supply on photosynthetic rate in relation to calmodulin in endemic and endangered tree saplings of Seshachalam hills of South Eastern Ghats of India. Journal of Plant Biology, 31, 159–164.Google Scholar
  38. Savithramma, N., Fareeda, G., Madhavi, V., & Murthy, S. D. S. (2007). Effect of Ca2+ on photochemical activities of green leafy vegetables. Journal of Plant Biology, 34(2), 95.Google Scholar
  39. Shaheen, R., Hassan, I., Hafiz, I. A., Jilani, G., & Abbasi, N. A. (2015). Balanced zinc nutrition enhances the antioxidative activities in oriental lily cut-flower leading to improved growth and vase quality. Scientia Horticulturae, 197, 644–649.CrossRefGoogle Scholar
  40. Sharma, A., Shankhdhar, D., & Shankhdhar, S. C. (2017). The role of calcium in plant signal transduction under macronutrient deficiency stress. In M. A. Hossain, T. Kamiya, D. J. Burritt, L. S. Phan Tran, & T. Fujiwara (Eds.), Plant Micronutrient Use Efficiency (pp. 181–196). London, UK: Academic Press.CrossRefGoogle Scholar
  41. Shehata, M., Azab, S. M., Fekry, A. M., & Ameer, M. A. (2016). Nano-TiO2 modified carbon paste sensor for electrochemical nicotine detection using anionic surfactant. Biosensors & Bioelectronics, 79, 589–592.CrossRefGoogle Scholar
  42. Singh, A., Prasad, S. M., & Singh, S. (2018). Impact of nano ZnO on metabolic attributes and fluorescence kinetics of rice seedlings. Environmental Nanotechnology, Monitoring & Management, 9, 42–49.CrossRefGoogle Scholar
  43. Sturikova, H., Krystofova, O., Huska, D., & Adam, V. (2018). Zinc, zinc nanoparticles and plants. Journal of Hazardous Materials, 349, 101–110.PubMedCrossRefGoogle Scholar
  44. Tantawy, A. S., Salama, Y. A. M., Abdel-Mawgoud, M. R., & Ghoname, A. A. (2014). Comparison of chelated calcium with nano calcium on alleviation of salinity negative effects on tomato plants. Middle East Journal of Agriculture Research, 3(4), 912–916.Google Scholar
  45. Torre, S., Borochov, A., & Halevy, A. H. (1999). Calcium regulation of senescence in rose petals. Physiologia Plantarum, 107(2), 214–219.CrossRefGoogle Scholar
  46. Ustun, N., Altunlu, H., Yokaş, I., & Saygili, H. (2007). Influence of potassium and calcium levels on severity of tomato pith necrosis and yield of greenhouse tomatoes. In: II International symposium on tomato diseases (vol. 808, pp. 347–350).Google Scholar
  47. Vazin, F. (2012). Effect of zinc sulfate on quantitative and qualitative characteristics of corn (Zea mays) in drought stress. Cercetari Agronomice in Moldova, 45(3), 15–24.CrossRefGoogle Scholar
  48. White, J. C., & Gardea-Torresdey, J. (2018). Achieving food security through the very small. Nature Nanotechnology, 13(8), 627.PubMedCrossRefGoogle Scholar
  49. Yang, H., & Jie, Y. (2005). Uptake and transport of calcium in plants. Journal of Plant Physiology and Molecular Biology, 31(3), 227.PubMedGoogle Scholar
  50. Zhang, X., Wei, J., Huang, Y., Shen, W., Chen, X., Lu, C., et al. (2018). Increased cytosolic calcium contributes to hydrogen-rich water-promoted anthocyanin biosynthesis under UV-A irradiation in radish sprouts hypocotyls. Frontiers in Plant Science, 9, 1020.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Indian Society for Plant Physiology 2019

Authors and Affiliations

  • Zeynab Seydmohammadi
    • 1
  • Zeynab Roein
    • 1
    Email author
  • Shirin Rezvanipour
    • 2
  1. 1.Department of Horticultural Sciences, Faculty of AgricultureIlam UniversityIlamIran
  2. 2.Department of Horticultural Sciences, Faculty of AgricultureUniversity of GuilanRashtIran

Personalised recommendations