Advertisement

Indian Journal of Plant Physiology

, Volume 23, Issue 4, pp 630–646 | Cite as

Forward and reverse genetics approaches for combined stress tolerance in rice

  • Rajeev N. Bahuguna
  • Priyanka Gupta
  • Jayram Bagri
  • Deepti Singh
  • Azri Kusuma Dewi
  • Lan Tao
  • Mirza Islam
  • Fatma Sarsu
  • Sneh L. Singla-Pareek
  • Ashwani PareekEmail author
Review Article

Abstract

Climate change impact on global agricultural food production has been evident in the past few decades. Abiotic factors such as heat, drought, and salinity share a major proportion of crop yield losses and posing a serious threat to global food security. Developing climate resilient crops has become a frontier area of basic plant science and agricultural research. Persistent efforts by scientists to understand crop responses under natural environment and progress in the field of genomics and phenomics has provided unprecedented pace to crop development programs. Rice is the most important cereal crop and staple food for more than 3 billion people worldwide. Heat, drought and salinity stress are the major constraints for global rice production. Hence, efforts are warranted to develop climate-resilient rice cultivars that can produce substantially under different abiotic stresses. Crop plants seldom face single stress in the natural environment. Indeed, heat and drought or drought and salinity are documented as very obvious combinations suggesting multiple stress tolerance as an important breeding target. Forward and reverse genetic tools could effectively contribute towards achieving the target food production to feed the future population despite limiting resources and unfavorable climatic conditions. Genetic approaches adopted for crop improvement programs categorized as forward and reverse genetics are discussed highlighting their potential benefits for tailoring stress tolerant cultivars.

Keywords

Forward genetics Reverse genetics Rice Drought Heat Salinity stress 

Notes

Acknowledgements

Authors would like to thank, Joint FAO-IAEA Division Plant breeding and Genetics section for support and encouragement under the IAEA-CRP 23031 “Improving Resilience to Drought in Rice and Sorghum through Mutation Breeding” project. AP would also like to thank Department of Biotechnolgy, GOI for financial support through INDIA-NWO program, and Indo-US Science and Technology Forum (IUSSTF) to his laboratory at JNU, New Delhi, India.

References

  1. Abdoli, M., & Saeidi, M. (2012). Effects of water deficiency stress during seed growth on yield and its components, germination and seedling growth parameters of some wheat cultivars. International Journal of Agriculture and Crop Sciences, 4(15), 1110–1118.Google Scholar
  2. Acevedo, E. (1993). Potential of carbon isotope discrimination as a selection criterion in barley breeding. In J. R. Ehleringer, A. E. Hall, & G. D. Farquhar (Eds.), Stable isotopes and plant carbon-water relations (pp. 399–417). London: Academic Press.Google Scholar
  3. Acquaah, M. (2014). Construct Measurement in Strategic Management Research in Africa. In Zoogah, D. B. (ed.) Advancing Research Methodology in the African Context: Techniques, Methods, and Designs (Research Methodology in Strategy and Management, Volume 10, pp. 1–20). Emerald Group Publishing Limited.Google Scholar
  4. Aharon, R., Shahak, Y., Wininger, S., Bendov, R., Kapulnik, Y., & Galili, G. (2003). Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. The Plant Cell, 15(2), 439–447.PubMedPubMedCentralGoogle Scholar
  5. Ali, J., Xu, J.-L., Gao, M.-Y., Ma, X.-F., Meng, L.-J., Wang, Y., et al. (2017). Harnessing the hidden genetic diversity for improving multiple abiotic stress tolerance in rice (Oryza sativa L.). PLoS ONE.  https://doi.org/10.1371/journal.pone.0172515.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Araus, J. L., Slafer, G. A., Reynolds, M. P., & Royo, C. (2002). Plant breeding and drought in C3 cereals: What should we breed for? Annals of Botany, 89(7), 925–940.PubMedPubMedCentralGoogle Scholar
  7. Bahuguna, R. N., & Jagadish, K. S. N. (2015). Temperature regulation of plant phenological development. Environmental and Experimental Botany, 111, 83–90.Google Scholar
  8. Bahuguna, R. N., Jagadish, K. S. V., Coast, O., & Wassmann, R. (2014). Plant abiotic stress: Temperature extremes. In N. Van Alfen (Ed.), Encyclopedia of agriculture and food systems (Vol. 4, pp. 330–334). San Diego: Elsevier.Google Scholar
  9. Barnabas, B., Jager, K., & Feher, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell and Environment, 31(1), 11–38.PubMedGoogle Scholar
  10. Battisti, D. S., & Naylor, R. L. (2009). Historical warnings of future food insecurity with unprecedented seasonal heat. Science, 323, 240–244.PubMedGoogle Scholar
  11. Bing, Y. I., Zhou, Y. F., Gao, M. Y., Zhang, Z., Yi, H. A. N., Yang, G. D., et al. (2014). Effect of drought stress during flowering stage on starch accumulation and starch synthesis enzymes in sorghum grains. Journal of Integrative Agriculture, 13(11), 2399–2406.Google Scholar
  12. Bray, E. A., et al. (2000). Responses to abiotic stresses. In W. Gruissem, et al. (Eds.), Biochemistry and molecular biology of plants (pp. 1158–1249). Rockville: American Society of Plant Physiologists.Google Scholar
  13. Cabrera-Bosquet, L., Crossa, J., Zitzewitz, V. J., Serret, M. D., & Luis Araus, J. (2012). High-throughput phenotyping and genomic selection: The frontiers of crop breeding converge. Journal of Integrative Plant Biology, 54, 312–320.PubMedGoogle Scholar
  14. Campo, S., Baldrich, P., Messeguer, J., Lalanne, E., Coca, M., & San Segundo, B. (2014). Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation. Plant Physiology, 165, 688–704.PubMedPubMedCentralGoogle Scholar
  15. Checchetto, V., Formentin, E., Carraretto, L., Segalla, A., Giacometti, G. M., Szabo, I., et al. (2013). Functional characterization and determination of the physiological role of a calcium-dependent potassium channel from cyanobacteria. Plant Physiology, 162(2), 953–964.PubMedPubMedCentralGoogle Scholar
  16. Cheng, Z., Targolli, J., Huang, X., & Wu, R. (2002). Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Molecular Breeding, 10, (1–2), 71–82.Google Scholar
  17. Christensen, J. H., & Christensen, O. L. (2007). A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change, 81, 7–30.Google Scholar
  18. Coupel-Ledru, A., Lebon, E., Christophe, A., Gallo, A., Gago, A., Pantin, F., et al. (2016). Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine. Proceedings of the National Academy of Sciences of the United States of America, 113(32), 8963–8968.PubMedPubMedCentralGoogle Scholar
  19. Dinesh, A., Hariprasanna, K., Vanisri, S., Sujatha, M., & Dangi, K. S. (2017). Insilico identification of genes for combined drought and salinity stress in rice (Oryza sativa L.). Advances in Research, 9(1), 1–8.Google Scholar
  20. Duan, J., & Cai, W. (2012). OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. PLoS ONE, 7(9), 45117.Google Scholar
  21. Dubouzet, J. G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E. G., Miura, S., et al. (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression. The Plant Journal, 33(4), 751–763.PubMedGoogle Scholar
  22. Ebrahim, M. K., Zingsheim, O., El-Shourbagy, M. N., Moore, P. H., & Komor, E. (1998). Growth and sugar storage in sugarcane grown at temperatures below and above optimum. Journal of Plant Physiology, 153(5–6), 593–602.Google Scholar
  23. El Soda, M., Nadakuduti, S. S., Pillen, K., & Uptmoor, R. (2010). Stability parameter and genotype mean estimates for drought stress effects on root and shoot growth of wild barley pre-introgression lines. Molecular Breeding, 26, 583–593.Google Scholar
  24. Essamine, J., Ammar, S., & Bouzid, S. (2010). Impact of heat stress on germination and growth in higher plants: Physiological, biochemical and molecular repercussion and mechanisms of defense. Journal of Biological Sciences, 10(6), 565–572.Google Scholar
  25. Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., et al. (2017). Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant, 8, 1147.Google Scholar
  26. FAO. (2016). FAOSTAT. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  27. FAO. (2017). FAOSTAT. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  28. Farooq, M., Hussain, M., & Siddique, K. H. M. (2014). Drought stress in wheat during flowering and grain-filling periods. Critical Reviews in Plant Sciences, 33, 331–349.Google Scholar
  29. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29, 185–212.Google Scholar
  30. Fukao, T., & Xiong, L. (2013). Genetic mechanisms conferring adaptation to submergence and drought in rice: Simple or complex? Current Opinion in Plant Biology, 16, 196–204.PubMedGoogle Scholar
  31. Gao, J. P., Chao, D. Y., & Lin, H. X. (2007). Understanding abiotic stress tolerance mechanisms: Recent studies on stress response in rice. Journal of Integrative Plant Biology, 49(6), 742–750.Google Scholar
  32. Garg, A. K., Kim, J. K., Owens, T. G., Ranwala, A. P., Do Choi, Y., Kochian, L. V., et al. (2002). Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proceedings of the National Academy of Sciences, 99(25), 15898–15903.Google Scholar
  33. Giri, J., Vij, S., Dansana, P. K., & Tyagi, A. K. (2011). Rice A20/AN1 zinc-finger containing stress-associated proteins (SAP1/11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants. New Phytologist, 191(3), 721–732.PubMedGoogle Scholar
  34. Guo, L., Wang, Z. Y., Lin, H., Cui, W. E., Chen, J., Liu, M., et al. (2006). Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family. Cell Research, 16(3), 277.PubMedGoogle Scholar
  35. Guo, P., Baum, M., Grando, S., Ceccarelli, S., Bai, G., Li, R., et al. (2009). Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. Journal of Experimental Botany, 60(12), 3531–3544.PubMedPubMedCentralGoogle Scholar
  36. Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014 , 1–18.Google Scholar
  37. Gupta, B., Tripathi, A. K., Joshi, R., Pareek, A., & Singla-Pareek, S. L. (2015a). Designing climate-smart future crops employing signal transduction components. Pandey, Girdhar K. (Ed). In Elucidation of abiotic stress signaling in plants (pp. 393–413). New York: Springer.Google Scholar
  38. Gupta, B. K., Sahoo, K. K., Ghosh, A., Tripathi, A. K., Anwar, K., Das, P., et al. (2018). Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice. Plant, Cell and Environment, 41(5), 1186–1200.PubMedGoogle Scholar
  39. Gupta, D. K., Palma, J. M., & Corpas, F. J. (Eds.). (2015b). Reactive oxygen species and oxidative damage in plants under stress (pp. 1–22). Berlin: Springer.Google Scholar
  40. Gupta, P., Nutan, K. K., Singla-Pareek, S. L., & Pareek, A. (2017). Abiotic stresses cause differential regulation of alternative splice forms of GATA transcription factor in rice. Frontiers in Plant Science, 8, 1944.PubMedPubMedCentralGoogle Scholar
  41. Gupta, P., Sharma, R., Sharma, M. K., Sharma, M. P., Satpute, G. K., Garg, S., et al. (2015c). Soybean signaling crosstalk between biotic and abiotic stresses. In M. Miransari (Ed.), Environmental stress in Soybean production. London: Academic Press.Google Scholar
  42. Hakata, M., Kuroda, M., Miyashita, T., Yamaguchi, T., Mikiko Kojima, M., Sakakibara, H., et al. (2012). Suppression of α-amylase genes improves quality of rice grain ripened under high temperature. Plant Biotechnology Journal, 10, 1110–1117.PubMedGoogle Scholar
  43. Hanin, M., Brini, F., Ebel, C., Toda, Y., Takeda, S., & Masmoudi, K. (2011). Plant dehydrins and stress tolerance: Versatile proteins for complex mechanisms. Plant Signaling & Behavior, 6(10), 1503–1509.Google Scholar
  44. Hasan, M. R., Ghosh, A., Pareek, A., & Singla-Pareek, S. L. (2016). Glyoxalase pathway and drought stress tolerance in plants. In M. A. Hossain, S. H. Wani, S. Bhattachjee, D. J. Burritt, & L. S. P. Tran (Eds.), Drought stress tolerance in plants (Vol 1): Physiology and Biochemistry. New York: Springer. (In Press).Google Scholar
  45. Hasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643–9684.PubMedPubMedCentralGoogle Scholar
  46. Hong, Y., Zhang, H., Huang, L., Li, D., & Song, F. (2016). Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Frontiers in Plant Science, 7, 4.PubMedPubMedCentralGoogle Scholar
  47. Hsieh, T. H., Li, C. W., Su, R. C., Cheng, C. P., Tsai, Y. C., & Chan, M. T. (2010). A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta, 231(6), 1459–1473.PubMedGoogle Scholar
  48. Hu, T., Zhu, S., Tan, L., Qi, W., He, S., & Wang, G. (2016). Overexpression of OsLEA4 enhances drought, high salt and heavy metal stress tolerance in transgenic rice (Oryza sativa L.). Environmental and Experimental Botany, 123, 68–77.Google Scholar
  49. Huang, X. Y., Chao, D. Y., Gao, J. P., Zhu, M. Z., Shi, M., & Lin, H. X. (2009). A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes & Development, 23(15), 1805–1817.Google Scholar
  50. Hundertmark, M., & Hincha, D. K. (2008). LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics, 9(1), 118.PubMedPubMedCentralGoogle Scholar
  51. IPCC. (2007). In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, & C. E. Hanson (Eds.), Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (p. 976). Cambridge: Cambridge University Press.Google Scholar
  52. IPCC. (2013). In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (p. 1535). Cambridge: Cambridge University Press.Google Scholar
  53. IPCC. (2014). In Core Writing Team, R. K. Pachauri, & L. A. Meyer (Eds.), Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (p. 151). Geneva: IPCC.Google Scholar
  54. IPCC. (2018). Summary for Policymakers. In V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, et al. (Eds.), Global warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (p. 32). Geneva: World Meteorological Organization.Google Scholar
  55. Jagadish, S. V. K., Sumfleth, K., Howell, G., Redona, E., Wassmann, R., & Heuer, S. (2010). Temperature effects on rice: significance and possible adaptation. In R. Wassmann (Ed.) 2010 Advanced technologies of rice production for coping with climate change: ‘No Regret’ options for adaptation and mitigation and their potential uptake. Proceedings of the workshop advanced technologies of rice production for coping with climate change: ‘no regret’ options for adaptation and mitigation and their potential uptake held on 2325 June 2010 in Los Banos, Philippines. IRRI Limited Proceedings No. 16. Los Banos (Philippines) (p. 81). International Rice Research Institute.Google Scholar
  56. Jang, I. C., Oh, S. J., Seo, J. S., Choi, W. B., Song, S. I., Kim, C. H., et al. (2003). Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiology, 131(2), 516–524.PubMedPubMedCentralGoogle Scholar
  57. Jankowicz-Cieslak, J., & Till, B. J. (2015). Forward and reverse genetics in crop breeding. In J. M. Al-Khayri, et al. (Eds.), Advances in plant breeding strategies: Breeding, biotechnology and molecular tools. Cham: Springer International Publishing.  https://doi.org/10.1007/978-3-319-22521-0_8.CrossRefGoogle Scholar
  58. Joshi, R., Gupta, B., Pareek, A., Singh, M. B., & Singla-Pareek, S. L. (2016a). Functional genomics approach toward dissecting out abiotic stress tolerance trait in plants. In V. R. Rajpal, D. Sehgal, & S. N. Raina (Eds.), Genomics assisted breeding for crop improvement: Abiotic stress tolerance. New York: Springer.Google Scholar
  59. Joshi, R., Prashat, R., Sharma, P. C., Singla-Pareek, S. L., & Pareek, A. (2016b). Physiological characterization of gamma-ray induced mutant population of rice to facilitate biomass and yield improvement under salinity stress. Indian Journal of Plant Physiology, 21(4), 545–555.Google Scholar
  60. Joshi, R., Sahoo, K. K., Tripathi, A. K., Kumar, R., Gupta, B. K., Pareek, A., et al. (2018a). Knockdown of an inflorescence meristem-specific cytokinin oxidase–OsCKX2 in rice reduces yield penalty under salinity stress condition. Plant, Cell and Environment, 41(5), 936–946.PubMedGoogle Scholar
  61. Joshi, R., Singla-Pareek, S. L. & Pareek, A. (2018a). Engineering abiotic stress response in plants for biomass production. Journal of Biological Chemistry, pp.jbc-TM117.Google Scholar
  62. Kadam, N., Yin, X., Bindraban, P., Struik, P., & Jagadish, K. S. V. (2015). Does morphological and anatomical plasticity during the vegetative stage make wheat more tolerant of water deficit stress than rice? Plant Physiology, 167, 1389–1401.PubMedPubMedCentralGoogle Scholar
  63. Kadam, N. N., Tamilselvan, A., Lawas, L. M. F., Quinones, C., Bahuguna, R. N., Thomson, M. J., et al. (2017). Genetic control of plasticity in root morphology and anatomy of rice in response to water-deficit. Plant Physiology, 174, 2302–2315.PubMedPubMedCentralGoogle Scholar
  64. Kadam, N. N., Xiao, G., Melgar, R. J., Bahuguna, R. N., Quinones, C., Tamilselvan, A., et al. (2014). Agronomic and physiological responses to high temperature, drought, and elevated CO2 interactions in cereals. In D. Sparks (Ed.), Advances in agronomy (pp. 111–156). London: Academic Press.Google Scholar
  65. Kato, Y., Kamoshita, A., & Yamagishi, J. (2008). Preflowering abortion reduces spikelet number in upland rice under water stress. Crop Science, 48, 2389–2395.Google Scholar
  66. Khanna-Chopra, R., Semwal, V., Lakra, N., & Pareek, A. (2018). Proline—A key regulator conferring plant tolerance to salinity and drought. Mirza Hasanuzzaman, Masayuki Fujita, Hirosuke Oku, M. Tofazzal Islam (Ed.). In Plant tolerance to environmental stress: Role of exogenous phytoprotectants (pp. 59–72). Boca Raton: CRC Press.Google Scholar
  67. Kim, K. (1983). Studies on the effect of temperature during the reduction division and the grain filling stage in rice plants. II. Effect of air temperature at grain filling stage in indica-japonica crosses. Korean Journal of Crop Science, 28, 58–75.Google Scholar
  68. Knight, H., & Knight, M. R. (2001). Abiotic stress signalling pathways: specificity and cross-talk. Trends in Plant Science, 6(6), 262–267.PubMedGoogle Scholar
  69. Król, A. (2013). The growth and water uptake by yellow seed and black seed rape depending on the state of soil compaction. Ph.D. thesis, Bohdan Dobrzanski Institute of Agrophysics. PAS, Lublin, Poland.Google Scholar
  70. Kumar, M., Lee, S. C., Kim, J. Y., Kim, S. J., & Kim, S. R. (2014). Over-expression of dehydrin gene, OsDhn1, improves drought and salt stress tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). Journal of Plant Biology, 57(6), 383–393.Google Scholar
  71. Kumar, M. N., Jane, W. N., & Verslues, P. E. (2013). Role of the putative osmosensor Arabidopsis histidine kinase1 in dehydration avoidance and low-water-potential response. Plant Physiology, 161(2), 942–953.PubMedGoogle Scholar
  72. Kushwaha, H.R., Singla-Pareek, S.L. & Pareek, A. (2014). Putative osmosensor–OsHK3b–a histidine kinase protein from rice shows high structural conservation with its ortholog AtHK1 from Arabidopsis. Journal of Biomolecular Structure and Dynamics, 32(8), 1318–1332.PubMedGoogle Scholar
  73. Lakra, N., Nutan, K. K., Das, P., Anwar, K., Singla-Pareek, S. L., & Pareek, A. (2015). A nuclear-localized histone-gene binding protein from rice (OsHBP1b) functions in salinity and drought stress tolerance by maintaining chlorophyll content and improving the antioxidant machinery. Journal of Plant Physiology, 176, 36–46.PubMedGoogle Scholar
  74. Li, D. D., Xia, X. L., Yin, W. L., & Zhang, H. C. (2013). Two poplar calcineurin B-like proteins confer enhanced tolerance to abiotic stresses in transgenic Arabidopsis thaliana. Biologia Plantarum, 57(1), 70–78.Google Scholar
  75. Li, J., Wang, J., & Zeigler, R. S. (2014). The 3000 rice genomes project: New opportunities and challenges for future rice research. GigaScience, 3, 8.PubMedPubMedCentralGoogle Scholar
  76. Lian, H. L., Yu, X., Ye, Q., Ding, X. S., Kitagawa, Y., Kwak, S. S., et al. (2004). The role of aquaporin RWC3 in drought avoidance in rice. Plant and Cell Physiology, 45(4), 481–489.PubMedGoogle Scholar
  77. Lipiec, J., Doussan, C., Nosalewicz, A., & Kondracka, K. (2013). Effect of drought and heat stresses on plant growth and yield: A review. International Agrophysics, 27(4), 463–477.Google Scholar
  78. Liu, A. L., Zou, J., Liu, C. F., Zhou, X. Y., Zhang, X. W., Luo, G. Y., et al. (2013a). Over-expression of OsHsfA7 enhanced salt and drought tolerance in transgenic rice. BMB Reports, 46(1), 31.PubMedPubMedCentralGoogle Scholar
  79. Liu, C., Mao, B., Ou, S., Wang, W., Liu, L., Wu, Y., et al. (2014a). OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Molecular Biology, 84(1–2), 19–36.PubMedGoogle Scholar
  80. Liu, G., Li, X., Jin, S., Liu, X., Zhu, L., Nie, Y., et al. (2014b). Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS ONE, 9(1), 86895.Google Scholar
  81. Liu, J., & Zhu, J. K. (1997). An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance. Proceedings of the National Academy of Sciences, 94(26), 14960–14964.Google Scholar
  82. Liu, L. L., Ren, H. M., Chen, L. Q., Wang, Y., & Wu, W. H. (2013b). A protein kinase, calcineurin B-like protein-interacting protein kinase9, interacts with calcium sensor calcineurin B-like protein3 and regulates potassium homeostasis under low-potassium stress in Arabidopsis. Plant Physiology, 161(1), 266–277.PubMedGoogle Scholar
  83. Mallikarjuna, G., Mallikarjuna, K., Reddy, M. K., & Kaul, T. (2011). Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L.). Biotechnology Letters, 33(8), 1689–1697.PubMedGoogle Scholar
  84. Marti, M. C., Stancombe, M. A., & Webb, A. A. (2013). Cell-and stimulus type-specific intracellular free Ca2+ signals in Arabidopsis. Plant Physiology, 163(2), 625–634.PubMedPubMedCentralGoogle Scholar
  85. Mickelbart, M. V., Hasegawa, P. M., & Bailey-Serres, J. (2015). Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature Reviews Genetics, 16, 237–251.PubMedGoogle Scholar
  86. Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11(1), 15–19.PubMedGoogle Scholar
  87. Mittler, R., & Blumwald, E. (2010). Genetic engineering for modern agriculture challenges and perspectives. Annual Review of Plant Biology, 61, 443–462.PubMedGoogle Scholar
  88. Morita, S., Shiratsuchi, H., Takanashi, J., & Fujita, K. (2004). Effects of high temperature on ripening in rice plants—Analysis of the effects of high night and high day temperatures applied to the panicle and other parts of the plant. Japanese Journal of Crop Science, 73, 77–83.Google Scholar
  89. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.PubMedGoogle Scholar
  90. Nagato, K., & Ebata, M. (1965). Effect of high temperature during ripening period on the development and the quality of rice kernels. Proceedings of the Crop Science Society of Japan, 34, 5–65.Google Scholar
  91. Nguyen, M. X., Moon, S., & Jung, K. H. (2013). Genome-wide expression analysis of rice aquaporin genes and development of a functional gene network mediated by aquaporin expression in roots. Planta, 238(4), 669–681.PubMedGoogle Scholar
  92. Nutan, K. K., Kumar, G., Lata Singla-Pareek, S., & Pareek, A. (2018). A salt overly sensitive pathway member from Brassica juncea BjSOS3 can functionally complement ΔAtsos3 in Arabidopsis. Current Genomics, 19(1), 60–69.PubMedPubMedCentralGoogle Scholar
  93. Ohnishi, T., Sugahara, S., Yamada, T., Kikuchi, K., Yoshiba, Y., Hirano, H. Y., et al. (2005). OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes & Genetic Systems, 80(2), 135–139.Google Scholar
  94. Ouyang, S. Q., Liu, Y. F., Liu, P., Lei, G., He, S. J., Ma, B., et al. (2010). Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa L.) plants. The Plant Journal, 62(2), 316–329.PubMedGoogle Scholar
  95. Pandey, P., Irulappan, V., Bagavathiannan, M. V., & Senthil-Kumar, M. (2017). Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Frontiers in Plant Science, 8, 537.PubMedPubMedCentralGoogle Scholar
  96. Pareek, A., Singla, S. L., & Grover, A. (1995). Immunological evidence for accumulation of two high molecular weight (104 and 90 kDa) HSPs in response to different stresses in rice and in response to high temperature stress in diverse plant genera. Plant Molecular Biology, 29, 293–301.PubMedGoogle Scholar
  97. Pareek, A., Singla, S. L., & Grover, A. (1998). HSP 90 proteins in plants with special reference to rice system. Journal of Biosciences, 23, 361–367.Google Scholar
  98. Pareek, A., Singla, S. L., Kush, A. K., & Grover, A. (1997). Distribution patterns of HSP 90 protein in rice. Plant Science, 125, 221–230.Google Scholar
  99. Parry, M. A. J., Madgwick, P. J., Bayon, C., Tearall, K., Hernandez-Lopez, A., Baudo, M., et al. (2009). Mutation discovery for crop improvement. Journal of Experimental Botany, 60(10), 2817–2825.PubMedGoogle Scholar
  100. Peng, Y., Lin, W., Cai, W., & Arora, R. (2007). Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants. Planta, 226(3), 729–740.PubMedGoogle Scholar
  101. Phan, T. T. T., Ishibashi, Y., Miyazaki, M., Tran, H. T., Okamura, K., Tanaka, S., et al. (2013). High temperature-induced repression of the rice sucrose transporter (OsSUT1) and starch synthesis-related genes in sink and source organs at milky ripening stage causes chalky grains. Journal of Agronomy and Crop Science, 199(3), 178–188.Google Scholar
  102. Praba, M. L., Cairns, J. E., Babu, R. C., & Lafitte, H. R. (2009). Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. Journal of Agronomy and Crop Science, 195(1), 30–46.Google Scholar
  103. Rabbani, M. A., Maruyama, K., Abe, H., Khan, M. A., Katsura, K., Ito, Y., et al. (2003). Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiology, 133(4), 1755–1767.PubMedPubMedCentralGoogle Scholar
  104. Rang, Z. W., Jagadish, S. V. K., Zhou, Q. M., Craufurd, P. Q., & Heuer, S. (2011). Effect of high temperature and water stress on pollen germination and spikelet fertility in rice. Environmental and Experimental Botany, 70, 58–65.Google Scholar
  105. Reiser, V., Raitt, D. C., & Saito, H. (2003). Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. The Journal of Cell Biology, 161(6), 1035–1040.PubMedPubMedCentralGoogle Scholar
  106. Ristic, Z., & Cass, D. D. (1992). Chloroplast structure after water and high-temperature stress in two lines of maize that differ in endogenous levels of abscisic acid. International Journal of Plant Sciences, 153(2), 186–196.Google Scholar
  107. Rizhsky, L., Liang, H., & Mittler, R. (2002). The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiology, 130(3), 1143–1151.PubMedPubMedCentralGoogle Scholar
  108. Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., & Mittler, R. (2004). When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology, 134(4), 1683–1696.PubMedPubMedCentralGoogle Scholar
  109. Roberts, J. K., DeSimone, N. A., Lingle, W. L., & Dure, L. (1993). Cellular concentrations and uniformity of cell-type accumulation of two Lea proteins in cotton embryos. The Plant Cell, 5(7), 769–780.PubMedPubMedCentralGoogle Scholar
  110. Rollins, J. A., Habte, E., Templer, S. E., Colby, T., Schmidt, J., & Von Korff, M. (2013). Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeumvulgare L.). Journal of Experimental Botany, 64(11), 3201–3212.PubMedPubMedCentralGoogle Scholar
  111. Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K., & Izui, K. (2000). Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. The Plant Journal, 23(3), 319–327.PubMedGoogle Scholar
  112. Sakurai, J., Ishikawa, F., Yamaguchi, T., Uemura, M., & Maeshima, M. (2005). Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant and Cell Physiology, 46(9), 1568–1577.PubMedGoogle Scholar
  113. Saran, A., Dhakar, J., Singla-Pareek, S. L., & Pareek, A. (2017). Crosstalk between gibberellins and abiotic stress tolerance machinery in plants. Hoboken, NJ: Wiley.Google Scholar
  114. Schulz, P., Herde, M., & Romeis, T. (2013). Calcium-dependent protein kinases: Hubs in plant stress signaling and development. Plant Physiology, 163(2), 523–530.PubMedPubMedCentralGoogle Scholar
  115. Shi, P., Zhu, Y., Tang, L., Chen, J., Sun, T., Cao, W., et al. (2016). Differential effects of temperature and duration of heat stress during anthesis and grain filling stages in rice. Environmental and Experimental Botany, 132, 28–41.Google Scholar
  116. Shiri, M., Rabhi, M., El Amrani, A., & Abdelly, C. (2015). Cross-tolerance to abiotic stresses in halophytes: Application for phytoremediation of organic pollutants. Actaphysiologiae Plantarum, 37(10), 209.Google Scholar
  117. Singh, B., Mishra, S., Bohra, A., Joshi, J., & Siddique, K. M. K. (2018). Crop phenomics for abiotic stress tolerance in crop plants. In S. H. Wani (Ed.), Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants (pp. 277–296). London: Academic Press.Google Scholar
  118. Singh, M., Kumar, J., Singh, S., Singh, V. P., & Prasad, S. M. (2015). Roles of osmoprotectants in improving salinity and drought tolerance in plants: A review. Reviews in Environmental Science & Biotechnology, 14(3), 407–426.Google Scholar
  119. Singh, R., Singh, Y., Xalaxo, S., Verulkar, S., Yadav, N., Singh, S., et al. (2016). From QTL to variety-harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Science, 242, 278–287.PubMedGoogle Scholar
  120. Singla, S. L., Pareek, A., & Grover, A. (1997). Yeast HSP 104 homologue rice HSP 110 is developmentally- and stress-regulated. Plant Science, 125, 211–219.Google Scholar
  121. Singla, S. L., Pareek, A., & Grover, A. (1998). Plant HSP 100 proteins with special reference to rice system. Journal of Biosciences, 23, 337–345.Google Scholar
  122. Soda, N., Gupta, B. K., Anwar, K., & Sharan, A. (2018). Publisher correction: Rice intermediate filament, OsIF, stabilizes photosynthetic machinery and yield under salinity and heat stress. Scientific Reports, 8, 4072.PubMedPubMedCentralGoogle Scholar
  123. Soda, N., Singla-Pareek, S. L., & Pareek, A. (2016). Abiotic stress response in plants: Role of cytoskeleton. In N. Tuteja & S. S. Gill (Eds.), Abiotic stress response in plants. Hoboken: Wiley.Google Scholar
  124. Song, Y., Jing, S., & Yu, D. (2009). Overexpression of the stress-induced OsWRKY08 improves osmotic stress tolerance in Arabidopsis. Chinese Science Bulletin, 54, 4671.Google Scholar
  125. Sreenivasulu, N., Sopory, S. K., & Kavi Kishor, P. B. (2007). Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene, 388(1–2), 1–13.PubMedGoogle Scholar
  126. Suzuki, T., Eiguchi, M., Kumamaru, T., Satoh, H., Matsusaka, H., Moriguchi, K., et al. (2008). MNU-induced mutant pools and high performance TILLING enable finding of any gene mutation in rice. Molecular Genetic Genomics, 279, 213–223.Google Scholar
  127. Taiz, L., & Zeiger, E. (2006). Plant physiology (4th ed.). Sunderland, MA: Sinauer Associates Inc Publishers.Google Scholar
  128. Tran, L.-S. P., Urao, T., Qin, F., Maruyama, K., Kakimoto, T., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proceedings of the National Academy of Sciences 104(51):20623–20628Google Scholar
  129. Tyerman, S. D., Niemietz, C. M., & Bramley, H. (2002). Plant aquaporins: Multifunctional water and solute channels with expanding roles. Plant, Cell and Environment, 25(2), 173–194.PubMedGoogle Scholar
  130. Urao, T., Yakubov, B., Satoh, R., Yamaguchi-Shinozaki, K., Seki, M., Hirayama, T., & Shinozaki, K. (1999). A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. The Plant Cell 11(9), 1743.PubMedPubMedCentralGoogle Scholar
  131. Van Nguyen, N. & Ferrero, A. (2006). Meeting the challenges of global rice production. Paddy and Water Environment, 4(1), 1–9.Google Scholar
  132. Verslues, P. E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J., & Zhu, J. K. (2006). Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal, 45(4), 523–539.PubMedGoogle Scholar
  133. Vierling, E. (1991). The roles of heat shock proteins in plants. Annual Review of Plant Biology, 42(1), 579–620.Google Scholar
  134. Vinocur, B., & Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: Achievements and limitations. Current Opinion in Biotechnology, 16(2), 123–132.PubMedGoogle Scholar
  135. Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199–223.Google Scholar
  136. Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218(1), 1–14.PubMedGoogle Scholar
  137. Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9(5), 244–252.PubMedGoogle Scholar
  138. Wang, X. S., Zhu, H. B., Jin, G. L., Liu, H. L., Wu, W. R., & Zhu, J. (2007). Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Science, 172(2), 414–420.Google Scholar
  139. Wassmann, R., Jagadish, S. V. K., Sumfleth, K., Patha, H., Howell, G., Ismail, A., et al. (2009). Regional vulnerability of climate change impacts on asian rice production and scope for adaptation. Advances in Agronomy, 102, 91–133.Google Scholar
  140. Wei, S., Hu, W., Deng, X., Zhang, Y., Liu, X., Zhao, X., et al. (2014). A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility. BMC Plant Biology, 14(1), 133.PubMedPubMedCentralGoogle Scholar
  141. Winkel, T., Renno, J. F., & Payne, W. A. (1997). Effect of the timing of water deficit on growth, phenology and yield of pearl millet (Pennisetumglaucum (L.) R. Br.) grown in Sahelian conditions. Journal of Experimental Botany, 48, 1001–1009.Google Scholar
  142. Wopereis, M. C. S., Kropff, M. J., Maligaya, A. R., & Tuong, T. P. (1996). Drought-stress responses of two lowland rice cultivars to soil water status. Field Crops Research, 46, 21–39.Google Scholar
  143. Xiang, J., Ran, J., Zou, J., Zhou, X., Liu, A., Zhang, X., et al. (2013). Heat shock factor OsHsfB2b negatively regulates drought and salt tolerance in rice. Plant Cell Reports, 32(11), 1795–1806.PubMedGoogle Scholar
  144. Xiang, Y., Tang, N., Du, H., Ye, H., & Xiong, L. (2008). Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiology, 148(4), 1938–1952.PubMedPubMedCentralGoogle Scholar
  145. Xiong, H., Li, J., Liu, P., Duan, J., Zhao, Y., Guo, X., et al. (2014). Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS ONE, 9(3), e92913.PubMedPubMedCentralGoogle Scholar
  146. Xu, D., Duan, X., Wang, B., Hong, B., Ho, T. H. D., & Wu, R. (1996). Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiology, 110(1), 249–257.PubMedPubMedCentralGoogle Scholar
  147. Xu, G. Y., Rocha, P. S., Wang, M. L., Xu, M. L., Cui, Y. C., Li, L. Y., et al. (2011). A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta, 234(1), 47–59.PubMedGoogle Scholar
  148. Yamakawa, H., Hirose, T., Kuroda, M., & Yamaguchi, T. (2007). Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiology, 144(1), 258–277.PubMedPubMedCentralGoogle Scholar
  149. Yang, A., Dai, X., & Zhang, W. H. (2012). A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. Journal of Experimental Botany, 63(7), 2541–2556.PubMedPubMedCentralGoogle Scholar
  150. Yang, J., Zhang, J., Wang, Z., Zhu, Q., & Liu, L. (2002). Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling. Planta, 215(4), 645–652.PubMedGoogle Scholar
  151. Yeo, A. R., Yeo, M. E., Flowers, S. A., & Flower, T. J. (1990). Screening of rice (Oryza sativa L.) genptypes for physiological characters contributing to salinity resistance, and their relationship to overall performance. Theoretical and Applied Genetics, 79, 377–384.PubMedGoogle Scholar
  152. Yu, J., Lai, Y., Wu, X., Wu, G., & Guo, C. (2016). Overexpression of OsEm1 encoding a group I LEA protein confers enhanced drought tolerance in rice. Biochemical and Biophysical Research Communications, 478(2), 703–709.PubMedGoogle Scholar
  153. Zeeman, S. C., Thorneycroft, D., Schupp, N., Chapple, A., Weck, M., Dunstan, H., et al. (2004). Plastidial α-glucanphosphorylase is not required for starch degradation in Arabidopsis leaves but has a role in the tolerance of abiotic stress. Plant Physiology, 135(2), 849–858.PubMedPubMedCentralGoogle Scholar
  154. Zhou, J., Wang, X., Jiao, Y., Qin, Y., Liu, X., He, K., et al. (2007). Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Molecular Biology, 63(5), 591–608.PubMedPubMedCentralGoogle Scholar
  155. Zhu, B., Su, J., Chang, M., Verma, D. P. S., Fan, Y. L., & Wu, R. (1998). Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice. Plant Science, 139(1), 41–48.Google Scholar
  156. Zhu, J. K. (2016). Abiotic stress signaling and responses in plants. Cell, 167(2), 313–324.PubMedPubMedCentralGoogle Scholar
  157. Zhu, Y. N., Shi, D. Q., Ruan, M. B., Zhang, L. L., Meng, Z. H., Liu, J., et al. (2013). Transcriptome analysis reveals crosstalk of responsive genes to multiple abiotic stresses in cotton (Gossypiumhirsutum L.). PLoS ONE, 8(11), 80218.Google Scholar
  158. Zou, J., Liu, C., Liu, A., Zou, D., & Chen, X. (2012). Overexpression of OsHsp17.0 and OsHsp23. 7 enhances drought and salt tolerance in rice. Journal of Plant Physiology, 169(6), 628–635.PubMedGoogle Scholar

Copyright information

© Indian Society for Plant Physiology 2018

Authors and Affiliations

  • Rajeev N. Bahuguna
    • 1
  • Priyanka Gupta
    • 1
  • Jayram Bagri
    • 1
  • Deepti Singh
    • 1
  • Azri Kusuma Dewi
    • 2
  • Lan Tao
    • 3
  • Mirza Islam
    • 4
  • Fatma Sarsu
    • 5
  • Sneh L. Singla-Pareek
    • 6
  • Ashwani Pareek
    • 1
    Email author return OK on get
  1. 1.Stress Physiology and Molecular Biology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Plant Mutation Breeding Group, Center for Isotopes and Radiation ApplicationNational Nuclear Energy AgencyJakartaIndonesia
  3. 3.Department of Plant Science and Technology, College of Crop SciencesFujian Agriculture and Forestry UniversityFuzhouChina
  4. 4.Bangladesh Institute of Nuclear Agriculture (BINA) Plant Breeding DivisionMymensinghBangladesh
  5. 5.Joint FAO/IAEA Division of Nuclear Techniques in Food and AgricultureInternational Atomic Energy AgencyViennaAustria
  6. 6.Plant Stress BiologyInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia

Personalised recommendations