Indian Journal of Plant Physiology

, Volume 23, Issue 4, pp 670–688 | Cite as

Physiological, genetic and molecular basis of drought resilience in sorghum [Sorghum bicolor (L.) Moench]

  • Ashok Badigannavar
  • Niaba Teme
  • Antonio Costa de Oliveira
  • Guying Li
  • Michel Vaksmann
  • Vivian Ebeling Viana
  • T. R. Ganapathi
  • Fatma SarsuEmail author
Review Article


Developing drought resistant cereal crops continues to be a major challenge in the climate change scenario. Sorghum is a C4 crop and its yield levels are highly affected by terminal drought stress under rainfed conditions. Efficient screening methods coupled with high throughput phenotyping techniques are required for breeding climate resilient crops. Plant adaptation to drought stress is manifested by several modifications at morphological, anatomical, physiological levels. Several mechanisms including osmotic adjustments, stay green, leaf rolling, waxyness on stem, root morphology and its architecture, transpiration efficiency, secretion of soluble solutes are known to play important role in bringing drought tolerance. Several breeding methods have been proposed and a single method may not hold good for all the crop species. Recombination, mutation and molecular breeding methods are mainly used for breeding drought resistant plants. At molecular level, several QTL’s governing pre- and post flowering drought tolerance have been identified in cereals and specifically in sorghum. At genome level, genes involved in proline metabolism, transmembrane ion transporter, abscisic acid metabolism, etc., are known to be upregulated under water deficit conditions. Recent studies on transcriptome analysis showed that genes which are expressed in sensitive plants are related to stress responses and oxy reduction reactions. Recently high throughput phenotyping tools have been developed to associate drought responsive traits to genomic regions governing quantitative traits. In this review, detailed mechanisms and breeding approaches related to drought stress in cereals and specifically in sorghum are discussed.


Drought stress Phenomics Physiology Sorghum Stay green 



Authors would like to thank, Joint FAO-IAEA Division Plant breeding and Genetics section for support and encouragement under the IAEA-CRP 23031 “Improving Resilience to Drought in Rice and Sorghum through Mutation Breeding” project.

Compliance with ethical standards

Conflict of interest

Authors declare that there is no conflict of interest.


  1. Amaducci, S., Colauzzi, M., Battini, F., Fracasso, A., & Perego, A. (2016). Effect of irrigation and nitrogen fertilization on the production of biogas from maize and sorghum in a water limited environment. European Journal of Agronomy, 76, 54–65.Google Scholar
  2. Amede, T., & Schubert, S. (2003). Mechanism of drought resistance in grain legumes I: Osmotic adjustment. Ethiopean Journal of Science, 26, 37–46.Google Scholar
  3. Araus, J. L., & Cairns, J. E. (2014). Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Science, 19, 52–61.Google Scholar
  4. Aruna, C., & Audilakshmi, S. (2008). A strategy to identify potential germplasm for improving yield attributes using diversity analysis in sorghum. Plant Genetics Resources; Characterization Utilization, 6(3), 187–194.Google Scholar
  5. Ayyangar, G. N. R., & Ponnaiya, B. W. X. (1941). The occurrence and inheritance of a bloomless sorghum. Current Science, 10, 408–409.Google Scholar
  6. Ayyangar, G. N. R., Rao, V. P., Nambiar, A. K., & Ponnaiya, B. W. X. (1937). The occurrence and inheritance of waxy bloom on sorghum. Proceedings of the Indian Academy of Science, 5B, 4–15.Google Scholar
  7. Baker, N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89–113.PubMedGoogle Scholar
  8. Balota, M., Payne, W. A., Rooney, W., & Rosenow, D. (2008). Gas exchange and transpiration ratio in sorghum. Crop Science, 48, 2361–2371.Google Scholar
  9. Baxter, S. W., Davey, J. W., Johnston, J. S., Shelton, A. M., Heckel, D. G., & Jiggins, C. D. (2011). Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism. PLoS ONE, 6(4), e19315. Scholar
  10. Bidinger, F. R., Hammer, G. L., & Muchow, R. C. (1996). The physiological basis of genotype by environment interaction in crop adaptation. In M. Cooper & G. L. Hammer (Eds.), Plant adaptation and crop improvement (pp. 329–347). Wallingford: CAB International.Google Scholar
  11. Blum, A. (1975). Effect of the bm gene on epicuticular wax and the water relations of sorghum bicolor. Israel Journal of Botany, 24, 50.Google Scholar
  12. Blum, A. (1979). Genetic improvement of drought resistance in crop plants. A case for sorghum. In H. Hussell & R. C. Staples (Eds.), Stress Physiology in Crop Plants (pp. 495–545). New York: Wiley Inter science.Google Scholar
  13. Blum, A. (1983). Genetic and physiological relationships in plant breeding for drought resistance. Agriculture and Water Manage, 7, 195–205.Google Scholar
  14. Blum, A. (1989). Breeding methods for drought resistance. In: H. G. Jones, T. J. Flowers & M. B. Jones (Eds.), Plants under stress. SOC Exp Biol Seminar Ser 39, (pp. 197–215). Cambridge: Cambridge Univ. Press.Google Scholar
  15. Blum, A. (2005). Drought resistance, water-use efficiency, and yield potential-are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research, 56, 1159–1168.Google Scholar
  16. Blum, A. (2011). Drought resistance and its improvement. In A. Blum (Ed.), Plant breeding for water-limited environments (pp. 53–137). New York: Springer.Google Scholar
  17. Blum, A., Arkin, G. F., & Jordan, W. R. (1977). Sorghum root morphogenesis and growth. I. Effect of maturity genes. Crop Science, 17, 149–153.Google Scholar
  18. Blum, A., Mayer, J., & Golan, G. (1989). Agronomic and physiological assessments of genotypic variation for drought resistance in sorghum. Australian Journal of Agriculture Research, 40, 49–61.Google Scholar
  19. Blum, A., & Sullivan, C. Y. (1986). The comparative drought resistance of landraces of sorghum and millet from dry and humid regions. Annals of Botany, 57, 835–846.Google Scholar
  20. Borrell, A. K., Hammer, G. L., & Douglas, A. C. L. (2000). Does maintaining green leaf area in sorghum improve yield under drought I. Leaf growth and senescence. Crop Science, 40, 1026–1037.Google Scholar
  21. Borrell, A., Jordan, D., Mullet, J., Henzell, B., & Hammer, G. (2006). Drought adaptation in sorghum. In J. M. Ribaut (Ed.), Drought adaptation in cereals (pp. 335–378). Binghamton, NY: The Haworth Press Inc.Google Scholar
  22. Borrell, A. K., Mullet, J. E., George-Jaeggli, B., Oosterom, Van, Hammer, E. J., Klein, G. L., et al. (2014). Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. Journal of Experimental Botany, 65(21), 6251–6263.PubMedPubMedCentralGoogle Scholar
  23. Buchanan, C. D., Lin, S. R., Salzman, A., Kagiampakis, I., & Morishige, D. (2005). Sorghum bicolor transcriptome response to dehydration, high salinity and ABA. Plant Molecular Biology, 58, 699–720.PubMedGoogle Scholar
  24. Cha, K.-W., Lee, Y. J., Koh, H. J., Lee, B. M., Nam, Y. W., & Paek, N. C. (2002). Isolation, characterization, and mapping of the stay green mutant in rice. Theoretical and Applied Genetics, 104, 526–532.PubMedGoogle Scholar
  25. Chartzoulakis, K., Patakas, A., & Bosabalidis, A. M. (1999). Changes in water relations, photosynthesis and leaf anatomy induced by intermittent drought in two olive cultivars. Environmental and Experimental Botany, 42, 113–120.Google Scholar
  26. Chaudhari, U. N., Deaton, M. L., Kanemasu, E. T., Wall, G. W., Marcarian, V., & Dobrenz, A. K. (1986). A procedure to select drought-tolerant sorghum and millet genotypes using canopy temperature and vapor pressure deficit. Agronomy Journal, 78, 490–494.Google Scholar
  27. Chen, T. H. H., & Murata, N. (2002). Enhancement of tolerance to abiotic stress by metabolic engineering of betaines and other compatible solutes. Current Opinion in Plant Biology, 5, 250–257.PubMedGoogle Scholar
  28. Cobb, J. N., Declerck, G., Greenberg, A., Clark, R., & McCouch, S. (2013). Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype—phenotype relationships and its relevance to crop improvement. Theoretical and Applied Genetics, 126, 867–887.PubMedGoogle Scholar
  29. Comai, L., & Henikoff, S. (2006). TILLING: practical single-nucleotide mutation discovery. Plant Journal, 45, 684–694.PubMedGoogle Scholar
  30. Cothren, J. T., Motocha, J. E., & Clark, L. E. (2000). Integrated crop management for sorghum. In C. W. Smith & R. A. Frederiksen (Eds.), Sorghum origin, history, technology and production. Wiley series in crop science (pp. 409–442). Hoboken, NJ: Wiley.Google Scholar
  31. Crasta, O. R., Xu, W. W., Rosenow, D. T., Mullet, J., & Nguyen, H. T. (1999). Mapping of post-flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Molecular Genetics and Genomics, 262, 579–588.Google Scholar
  32. Davey, J. W., Hohenlohe, P. A., Etter, P. D., Boone, J. Q., Catchen, J. M., & Blaxter, M. L. (2011). Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics, 12, 499–510.PubMedGoogle Scholar
  33. Dingkuhn, M., Audebert, A. Y., Jones, M. P., Etienne, K., & Sow, A. (1999). Control of stomatal conductance and leaf rolling in O. sativa and O. glaberrima upland rice. Field Crops Research, 61, 223–236.Google Scholar
  34. Dugas, D. V., Monaco, M. K., Olson, A., Klein, R. R., Kumari, S., & Ware, D. (2011). Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid. BMC Genomics, 12, 514.PubMedPubMedCentralGoogle Scholar
  35. Duncan, R. R., Bockholt, A. J., Miller, F. R. (1981). Descriptive comparison of senescent and non-senescent sorghum genotypes. Agronomy Journal, 73, 849–853.Google Scholar
  36. Ejeta, G., Goldsborogh, P. B., Tunistra, M. R., Grote, E. M., Menkir, A., Ibrahim, Y., et al. (2000). Molecular marker applications in sorghum. In B. I. G. Haussmann, H. H. Gieger, D. E. Hess, C. T. Hash, & P. Bramel-Cox (Eds.), Application of molecular markers in plant breeding, training manual on seminar held at IITA. Ibdan: International Crop Research Institute for the Semi-Arid Tropics.Google Scholar
  37. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy and Sustainable Development, 29, 185–212.Google Scholar
  38. Fracasso, A., Trindade, L. M., & Amaducci, S. (2016). Drought stress tolerance strategies revealed by RNA-seq in two sorghum genotypes with contrasting WUE. BMC Plant Biology, 16, 115–133.PubMedPubMedCentralGoogle Scholar
  39. Furbank, R. T., & Tester, M. (2011). Phenomics-technologies to relieve the phenotyping bottleneck. Trends Plant Science, 16, 635–644.Google Scholar
  40. Ghanem, M. E., Marrou, H., & Sinclair, T. R. (2015). Physiological phenotyping of plants for crop improvement. Trends in Plant Science, 20(3), 139–144.PubMedGoogle Scholar
  41. Ghany, A. S. E., Hamilton, M., Jennifer, L., Jacobi, Peter Ngam, Devitt, Nicholas, Schilkey, Faye, et al. (2016). A survey of the sorghum transcriptome using single-molecule long reads. Nature Communications, 7, 1–11.Google Scholar
  42. Ghatak, A., Chaturvedi, P., & Weckwerth, W. (2017). Cereal crop proteomics: Systemic analysis of crop drought stress responses towards marker-assisted selection breeding. Frontier in Plant Science, 8, 757.Google Scholar
  43. Grenier, C., Bramel-Cox, P. J., & Hamon. P. (2001). Core collection of sorghum: I. Stratification based on eco-geographical data. Crop Science, 41, 234–240. Scholar
  44. Grossman, J. D., & Rice, K. J. (2012). Evolution of root plasticity responses to variation in soil nutrient distribution and concentration. Evolutionary Applications, 5, 850–857.PubMedPubMedCentralGoogle Scholar
  45. Hamza, N. G., Atif, E., Idris, Ismael I., Elmunsor, Ali I. A., Ibrahim, A. I., & Abuali, A. I. (2016). Drought tolerance assessment in grain sorghum (Sorghum bicolor [L.] Moench) genotypes using agro-morphological traits and DNA markers. International Journal of Plant Breeding and Genetics, 10(3), 125–131.Google Scholar
  46. Hanna, W. W. (1982) Mutation breeding of pearl millet and sorghum. Mutation Breeding Review, 1, 1–13.Google Scholar
  47. Harris, K. R. (2007). Dissertation: genetic analysis of the sorghum bicolor stay-green drought tolerance trait. Texas: A&M University.Google Scholar
  48. Harris, K., Subudhi, P. K., Borrell, A., Jordan, D., Rosenow, D., Nguyen, H., et al. (2007). Sorghum stay green QTL individually reduce post-flowering drought-induced leaf senescence. Journal of Experimental Botany, 58, 327–338.PubMedGoogle Scholar
  49. Haussmann, B. I. G., Mahalakshmi, V., Reddy, B. V. S., Seetharama, N., Hash, C. T., & Geiger, H. H. (2002). QTL mapping of stay-green in two sorghum recombinant inbred populations. Theoretical and Applied Genetics, 106, 133–142.PubMedGoogle Scholar
  50. Haussmann, B. I. G., Obilana, A. B., Blum, A., Ayiecho, P. O., Schipprack, W., & Geiger, H. H. (1998). Hybrid performance of sorghum and its relationship to morphological and physiological traits under variable drought stress in Kenya. Plant Breeding, 117(Suppl. 3), 223–229.Google Scholar
  51. Heslot, N., Akdemir, D., Sorrells, M. E., & Jannink, J. L. (2014). Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions. Theoretical and Applied Genetics, 127, 463–480.PubMedGoogle Scholar
  52. Houle, D., Govindaraju, D. R., & Omholt, S. (2010). Phenomics: the next challenge. Nature Review in Genetics, 11, 855–866.Google Scholar
  53. House, L. R. (1985). A guide to sorghum breeding (Vol. II, pp. 1–206). Patancheru: International Crops Research Institute for the Semi-Arid Tropics.Google Scholar
  54. House, L. R., Gomez, M., Murty, D. S., Sun, Y., & Verma, B. N. (2000). Development of some agricultural industries in several African and Asian countries. In C. W. Smith & R. A. Frederiksen (Eds.), Sorghum origin, history, technology and production. Wiley series in crop science (pp. 131–190). Hoboken, NJ: Wiley.Google Scholar
  55. Hsiao, T. C., O’Toole, J. C., Yambao, E. B., & Turner, N. C. (1984). Influence of osmotic adjustment on leaf rolling and tissue death in rice (Oryza sativa L.). Plant Physiology, 75, 338–341.PubMedPubMedCentralGoogle Scholar
  56. Huang, X., & Han, B. (2014). Natural variations and genome-wide association studies in crop plants. Annual Review of Plant Biology, 65, 531–551.PubMedGoogle Scholar
  57. Human, S., Sihono, S., & Parno, P. (2006). Application of mutation techniques in sorghum breeding for improvement of drought tolerance. Atom Indonesia, 32, 35–43.Google Scholar
  58. Human, S., Sihono, S., & Parno, P. (2011). Application of mutation techniques in sorghum breeding for improved drought tolerance. Atom Indonesia, 32(1), 35–43.Google Scholar
  59. IAEA. (1984). Selection in mutation breeding. In Proceedings of consultants meeting, joint FAO/IAEA, Vienna, June 21–25, 1982. STI/PUB/665. ISBN 92-0-111284-X.Google Scholar
  60. Impa, S. M., Nadaradjan, S., Boominathan, P., Shashidhar, G., Bindumadhava, H., & Sheshshayee, M. S. (2005). Carbon isotope discrimination accurately reflects variability in WUE measured at a whole plant level in rice. Crop Science, 45, 2517–2522.Google Scholar
  61. IPCC. (2012). Summary for policy makers. In C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, et al. (Eds.), Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working Groups I and II of the intergovernmental panel on climate change (pp. 1–19). Cambridge: Cambridge University Press.Google Scholar
  62. Izanloo, A., Condon, A. G., Langridge, P., Tester, M., & Schnurbusch, T. (2008). Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars. Journal of Experimental Botany, 59, 3327–3346.PubMedPubMedCentralGoogle Scholar
  63. Jabereldar, A. A., Naim, A. M., Abdalla, A. A., & Dagash, Y. M. (2017). Effect of water stress on yield and water use efficiency of sorghum (Sorghum bicolor L. Moench) in semi-arid environment. International Journal of Agriculture and Forestry, 7(1), 1–6.Google Scholar
  64. Jedmowski, C., Ashoub, A., Beckhaus, T., Berberich, T., Karas, M., & Brüggemann, W. (2014). Comparative analysis of Sorghum bicolor proteome in response to drought stress and following recovery. International Journal of Proteomics. Article ID 395905, 1–10.Google Scholar
  65. Jagadish, K. S. V., Kavi Kishor, P. B., Bahuguna, R. N., von Wirén, N., & Sreenivasulu, N. (2015). Staying alive or going to die during terminal senescence - An enigma surrounding yield stability. Frontiers in Plant Science, 6, 1070. Scholar
  66. Ji, X. M., Raveendran, M., Oane, R., Ismail, A., Lafitte, R., Bruskiewich, R., et al. (2005). Tissue-specific expression and drought responsiveness of cell-wall invertase genes of rice at flowering. Plant Molecular Biology, 59, 945–964.PubMedGoogle Scholar
  67. Johnson, S. M., Lim, F. L., Finkler, A., Fromm, H., Slabas, A. R., & Knight, M. R. (2014). Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress. Journal of Experimental Botany, 66(22), 7061–7073.Google Scholar
  68. Jordan, W. R., Monk, R. L., Miller, F. R., Rosenow, D. T., Clark, L. E., & Shouse, P. J. (1983). Environmental physiology of sorghum. I. Environmental and genetic control of epicuticular wax load. Crop Science, 23, 1983.Google Scholar
  69. Jordan, D. R., Tao, Y., Godwin, I. D., Henzell, R. G., Cooper, M., & McIntyre, C. L. (2003). Prediction of hybrid performance in grain sorghum using RFLP markers. Theoretical and Applied Genetics, 106, 559–567.PubMedGoogle Scholar
  70. Joshi, R., Shabir, H., Wani, Balwant Singh, Bohra, A., Zahoor, A., Dar, A., et al. (2016). Transcription factors and plants response to drought stress: Current understanding and future directions. Frontiers in Plant Science, 7, 1–15.Google Scholar
  71. Kano, M., Inukai, Y., Kitano, H., & Yamauchi, A. (2011). Root plasticity as the key root trait for adaptation to various intensities of drought stress in rice. Plant and Soil, 342, 117–128.Google Scholar
  72. Kebede, H., Subudhi, P. K., Rosenow, D. T., & Nguyen, H. T. (2001). Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theoretical and Applied Genetics, 103, 266–276.Google Scholar
  73. Liu, Y., Subhash, C., Yan, J., Song, C., Zhao, J., & Li, J. (2011). Maize leaf temperature responses to drought: Thermal imaging and quantitative trait loci (QTL) mapping. Environmental and Experimental Botany, 71, 158–165.Google Scholar
  74. Lopes, M. S., Reynolds, M. P. (2012). Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. Journal of Experimental Botany, 63(10), 3789–3798. Scholar
  75. Ludlow, M. M. (1989). Strategies of response to water stress. In: K.H. Kreeb., H. Richter., T. M. Hinckley (Eds.), Structural and Functional Responses to Environmental Stresses (269–281). SPB Academic, The Hague.Google Scholar
  76. Ludlow, M. M., & Muchow, R. C. (1990). A critical evaluation of traits for improving crop yield in water-limited environments. Advances in Agronomy, 43, 107–153.Google Scholar
  77. Lynch, J. (1995). Root architecture and plant productivity. Plant Physiology, 109, 7–13.PubMedPubMedCentralGoogle Scholar
  78. Mace, E., Singh, V., Van Oosterom, E., Hammer, G., Hunt, C., & Jordan, D. (2012). QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation. Theoretical and Applied Genetics, 124, 97–109.PubMedGoogle Scholar
  79. Martin, J. H. (1930). The comparative drought resistance of sorghums and corn. Journal of American Society of Agronomy, 22, 993–1003.Google Scholar
  80. Matsuura, A., Inanaga, S., & Sugimoto, Y. (1996). Mechanism of interspecific differences among four graminaceous crops in growth response to soil drying. Japanese Journal of Crop Science, 65, 352–360.Google Scholar
  81. Mitra, J. (2001). Genetics and genetic improvement of drought resistance in crop plants. Current Science, 80, 758–763.Google Scholar
  82. Mkhabela, S. M. (1995). Genetic variation, heritability estimates and yield relationship of pre flowering and post flowering drought resistant traits in grain sorghum. Ph.D. dissertation, Texas Tech University, Lubbock, TX, USA.Google Scholar
  83. Moaveni, P. (2010). Effect of drought stress on dry forage yield, plant height, Prussic acid and LAI in four varieties of Sorghum bicolor. In International conference on chemistry and chemical engineering (ICCCE 2010).Google Scholar
  84. Monneveux, P., Jing, R., & Misra, S. C. (2012). Phenotyping for drought adaptation in wheat using physiological traits. Frontier in Physiology. Scholar
  85. Muchow, R. C., Bidinger, F. R. & Hammer, G. L. (1996). Targeting sorghum improvement in drought-prone environments: Approaches and progress. In Proceedings of the international conference on genetic improvement of sorghum and pearl millet (pp. 429–442). Lubbock, TX.Google Scholar
  86. Murty, M. V. R., Singh, P., Wani, S. P., Khairwal, I. S., & Srinivas, K. (2007). Yield gap analysis of sorghum and pearl millet in India using simulation modeling. Global theme on agro-ecosystems report no. 37, International Crops Research Institute for the Semi-AridTropics, Patancheru 502 324, Andhra Pradesh, India, 82.Google Scholar
  87. Nakashima, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2014). The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Frontiers in Plant Science. Scholar
  88. Nour, A. M., Weibel, D. E., & Tood, G. W. (1978). Evaluation of root characteristics in grain sorghum. Agronomy Journal, 70, 217–218.Google Scholar
  89. O’Toole, J. C., & Moya, T. B. (1978). Genotypic variation in maintenance of leaf water potential in rice. Crop Science, 18, 873–886.Google Scholar
  90. Pauli, D., Andrade-Sanchez, Pedro, Elizabete Carmo-Silva, A., Gazave, Elodie, French, A. N., Heun, John, et al. (2016). Field-based high-throughput plant phenotyping reveals the temporal patterns of quantitative trait loci associated with stress-responsive traits in cotton. Genes, Genomes, Genetics, 6(4), 865–879.Google Scholar
  91. Pavli, O. I., Vlachos, Christos E., Kalloniati, C., & Skaracis, G. N. (2013). Metabolite profiling reveals the effect of drought on sorghum (Sorghum bicolor L. Moench) metabolism. Plant Omics, 6(6), 371–376.Google Scholar
  92. Peterson, G. C., Sukasayretrup, K., & Weibel, D. E. (1982). Inheritance of some bloomless and spare-bloom mutants in sorghum. Crop Science, 22, 63–67.Google Scholar
  93. Pinto, R. S., & Reynolds, M. P. (2015). Common genetic basis for canopy temperature depression under heat and drought stress associated with optimized root distribution in bread wheat. Theoretical and Applied Genetics, 128(4), 575–585.PubMedGoogle Scholar
  94. Pool, J., Hellmann, I., Jensen, J., & Nielsen, R. (2010). Population genetic inference from genomic sequence variation. Genome Research, 20, 291.PubMedPubMedCentralGoogle Scholar
  95. Prasad, P. V. V., Pisipati, S. R., Mutava, R. N., & Tuinstra, M. R. (2008). Sensitivity of grain sorghum to high temperature stress during reproductive development. Crop Science, 48, 1911–1917.Google Scholar
  96. Rakshit, S., Hariprasanna, K., Gomashe, S., Ganapathy, K. N., Das, I. K., Ramana, O. V., et al. (2014). Changes in area, yield gains, and yield stability of sorghum in major sorghum-producing countries, 1970 to 2009. Crop Science, 54, 1571–1584.Google Scholar
  97. Rakshit, S., Swapna, M., Dalal, M., Sushma, G., Ganapathy, K. N., Dhandapani, A., et al. (2016). Post-flowering drought stress response of post-rainy sorghum genotypes. Indian Journal of Plant Physiology, 21(1), 8–14.Google Scholar
  98. Rebetzke, G. J., et al. (2016). High-throughput phenotyping technologies allow accurate selection of stay-green. Journal of Experimental Botany, 67, 4919–4924.PubMedPubMedCentralGoogle Scholar
  99. Reddy, B. V. S. (1986). Genetic improvement for drought resistance in sorghum: A plant breeder’s viewpoint. In Genetic improvement for drought resistance. Proceedings of the discussion series of drought research seminar forums (pp. 28–32). ICRISAT, Patancheru 502 324, Andhra Pradesh, India.Google Scholar
  100. Reddy, B. V. S., Ashok Kumar, A., Ramesh, S., & Reddy, P. S. (2011). Breeding sorghum for coping with climate change. In S. S. Yadav, B. Redden, J. L. Hatfield, & H. Lotze-Campen (Eds.), Crop adaptation to climate change (pp. 326–339). Iowa: Wiley.Google Scholar
  101. Reddy, P. S., Bhadra Rao, T. S. R., Sharma, K. K., & Vadez, Vincent. (2015). Genome-wide identification and characterization of the aquaporin gene family in Sorghum bicolor (L.). Plant Gene, 1, 18–28.Google Scholar
  102. Reddy, B. V. S., Ramaiah, B., Ashok Kumar, A., & Reddy, P. S. (2007). Evaluation of sorghum genotypes for stay-green trait and grain yield. SAT Agricultural Research, 3(Suppl. 1), 1–4.Google Scholar
  103. Reddy, B. V. S., Ramesh, S., Reddy, P. S., & Ashok Kumar, A. (2009). Genetic enhancement for drought tolerance in sorghum. Plant Breeding Reviews, 31, 189–222.Google Scholar
  104. Reddy, N., Reddy, R., Madhusudhana, R., Murali, Mohan S., Seetharama, N., & Patil, J. V. (2014). Detection and validation of stay-green QTL inpost-rainy sorghum involving widely adapted cultivar, M35-1 and a popular stay-green genotype B35. BMC Genomics, 2014(15), 909.Google Scholar
  105. Rosenow, D. T., & Clark, L. E. (1981). Drought tolerance in sorghum (pp. 18–31). In H.D. Loden, D. Wilkinson (eds.), Proceeding of 36th annual corn and sorghum industry research conference, Chicago, IL. December 9–11, 1981. American Seed Trade Association, Washington, DC.Google Scholar
  106. Rosenow, D. T., Quisenberry, J. E., Wendt, C. W., & Clark, L. E. (1983). Drought tolerant sorghum and cotton germplasm. Agricultural Water Management, 7, 207–222.Google Scholar
  107. Roychoudhury, A., Basu, S., Sarkar, S. N., & Sengupta, D. N. (2008). Comparative physiological and molecular responses of a common aromatic indica rice cultivar to high salinity with non-aromatic indica rice cultivars. Plant Cell Reports, 27, 1395–1410.PubMedGoogle Scholar
  108. Sakhi, S., Shehzad, T., Rehman, S., & Okuno, K. (2013). Mapping QTL’s underlying drought stress at developmental stages of sorghum (Sorghum bicolor) by association analysis. Euphytica, 193, 433–450.Google Scholar
  109. Shanchez-Diaz, M. F., Hesketh, J. D., & Kramer, P. J. (1972). Wax filaments on sorghum leaves as screen with scanning electron micro-scope. Journal of Arizona Academy of Sciences, 7, 6–7.Google Scholar
  110. Sheoran, I. S., & Saini, H. S. (1996). Drought-induced male sterility in rice: Changes in carbohydrate levels and enzyme activities associated with the inhibition of starch accumulation in pollen. Sexual Plant Reproduction, 9(3), 161–169.Google Scholar
  111. Sihono, S. H. (2010). Sorghum breeding for improved drought tolerance using induced mutation with gamma irradiation. Indonesian Journal of Agronomy, XXXVIII(2), 95–99.Google Scholar
  112. Simon, W., Baxter, J., Davey, W., Spencer, J., Shelton, A. M., Heckel, D. G., et al. (2011). Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism. PLoS ONE, 6(4), e19315.Google Scholar
  113. Singh, V., van Oosterom, E. J., Jordan, D. R., & Hammer, G. L. (2012). Genetic control of nodal root angle in sorghum and its implications on water extraction. European Journal of Agronomy, 42, 3–10.Google Scholar
  114. Smith, C. W. (2000). Sorghum production statistics. In C. W. Smith & R. A. Frederiksen (Eds.), Sorghum origin, history, technology and production. Wiley series in crop science (pp. 401–407). Hoboken, NJ: Wiley.Google Scholar
  115. Subudhi, P. K., Rosenow, D. T., & Nguyen, H. T. (2000). Quantitative trait loci for the stay green trait in sorghum (Sorghum bicolor L. Moench): consistency across genetic backgrounds and environments. Theoretical and Applied Genetics, 101, 733–741.Google Scholar
  116. Taiz, L., & Zeiger, E. (2006). Stress physiology. In L. Taiz & E. Zeiger (Eds.), Plant physiology (4th ed., pp. 671–681). Sunderland, MA: Sinauer Associates Inc.Google Scholar
  117. Tangpremsri, T., Fukai, S., Fischer, K. S., & Henzell, R. G. (1991). Genotypic variation in osmotic adjustment in grain sorghum. I. Development of variation in osmotic adjustment under water-limited conditions. Australian Journal of Agriculture Research, 42, 747–757.Google Scholar
  118. Tao, Y. Z., Henzell, R. G., Jordan, D. R., Butler, D. G., Kelly, A. M., & McIntyre, C. L. (2000). Identification of genomic regions associated with stay-green in sorghum by testing RILs in multiple environments. Theoretical and Applied Genetics, 100, 1225–1232.Google Scholar
  119. Tardieu, F., Simonneau, T., & Muller, B. (2018). The physiological basis of drought tolerance in crop plants: a scenario-dependent probabilistic approach. Annual Review of Plant Biology, 69, 733–759.PubMedGoogle Scholar
  120. Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327, 818–822.PubMedGoogle Scholar
  121. Thomas, H., & Howarth, C. J. (2000). Five ways to stay green. Journal of Experimental Botany, 51, 329–337.PubMedGoogle Scholar
  122. Tuinstra, M. R., Ejeta, G., & Goldsbrough, P. (1998). Evaluation of near-isogenic sorghum lines contrasting for QTL markers associated with drought tolerance. Crop Science, 38, 835–842.Google Scholar
  123. Tuinstra, M. R., Grote, E. M., Goldsbrough, P. B., & Ejeta, G. (1997). Genetic analysis of post-flowering drought tolerance and components of grain development of Sorghum bicolor (L.) Moench. Molecular Breeding, 3, 439–448.Google Scholar
  124. Vadez, V., Kholova, J., Hummel, G., Zvokhavets, U., Gupta, S. K., & Hash, C. T. (2015). Leasy Scan: a novel concept combining 3D imaging and lysimetry for high-throughput phenotyping of traits controlling plant water budget. Journal of Experimental Botany, 66(18), 5581–5593. Scholar
  125. Vadez, V., Krishnamurthy, L., Hash, C. T., Upadhyaya, H. D., & Borrell, A. K. (2011). Yield, transpiration efficiency, and water-use variations and their interrelationships in the sorghum reference collection. Crop and Pasture Science, 62, 645–655.Google Scholar
  126. White, J. W., Andrade-Sanchez, P., Gore, M. A., Bronson, K. F., Coffelt, T. A., Conley, M. M., et al. (2012). Field-based phenomics for plant genetics research. Field Crops Research, 133, 101–112.Google Scholar
  127. Woodfin, C. A., Rosenow, D. T., & Clark, L. E. (1988). Association between the stay-green trait and lodging resistance in sorghum. Agronomy abstracts. Madison, WI: ASA.Google Scholar
  128. Xin, Z. U., Aiken, R., & Burke, J. (2009). Genetic diversity of transpiration efficiency in sorghum. Field Crops Research, 111, 74–80.Google Scholar
  129. Xin, Z., Franks, C., Payton, P., & Burke, J. J. (2008). A simple method to determine transpiration efficiency in sorghum. Field Crop Research, 107, 180–183.Google Scholar
  130. Xu, L., Naylor, D., Donga, Z., Simmonsa, T., Pierroza, G., Hixsonc, K. K., et al. (2018). Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. PNAS, 115(21), 1–10.Google Scholar
  131. Xu, W., Subudhi, P. K., Crasta, O. R., Rosenow, D. T., Mullet, J. E., & Nguyen, H. T. (2000). Molecular mapping of QTLs conferring stay-green in sorghum (Sorghum bicolor L. Meonch). Genome, 43, 461–469.PubMedGoogle Scholar
  132. Xu, Z., & Zhou, G. (2008). Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. Journal of Experimental Botany, 59, 3317–3325.PubMedPubMedCentralGoogle Scholar
  133. Yared, A., Staggenbor, S. A., & Prasad, V. P. V. (2010). Grain sorghum water requirement and responses to drought stress: A review. Manhattan: Throckmorton Hall.Google Scholar

Copyright information

© Indian Society for Plant Physiology 2018

Authors and Affiliations

  • Ashok Badigannavar
    • 1
  • Niaba Teme
    • 2
  • Antonio Costa de Oliveira
    • 3
  • Guying Li
    • 4
  • Michel Vaksmann
    • 5
  • Vivian Ebeling Viana
    • 3
  • T. R. Ganapathi
    • 1
  • Fatma Sarsu
    • 6
    Email author
  1. 1.Nuclear Agriculture and Biotechnology DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Institut d’Economie Rurale (IER)BamakoMali
  3. 3.Plant Genomics and Breeding CenterFederal University of PelotasCapão Do LeãoBrazil
  4. 4.National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
  5. 5.CIRAD/IERBamakoMali
  6. 6.Plant Breeding and Genetics SectionJoint FAO/IAEA Division of Nuclear Techniques in Food and AgricultureViennaAustria

Personalised recommendations