Indian Journal of Plant Physiology

, Volume 23, Issue 4, pp 822–832 | Cite as

Quantitative trait loci (QTL) for salinity tolerance traits in interspecific hybrids of Eucalyptus

  • V. Subashini
  • V. K. W. Bachpai
  • A. Mayavel
  • B. Nagarajan
  • V. Sivakumar
  • R. YasodhaEmail author
Original Article


Soil salinity is one of the major limiting factors in productivity of plants. Cultivation of industrially important fast growing saline tolerant tree species is one of the options to reclaim the saline soils. Some of the Eucalyptus species are salt tolerant and production of interspecific hybrids of these species would enhance productivity in saline environments. In this study, phenotypic parameters for growth, physiology and mineral nutrition were estimated in Eucalyptus camaldulensis × E. tereticornis F1 hybrids to understand the mechanism of salinity tolerance and localize quantitative trait loci (QTL) involved in sodium chloride (NaCl) stress. Salt injury scoring and plasma membrane damage showed a significant difference between tolerant and susceptible individuals, which was correlated with the gas exchange measurements and Na+, K+ and K+/Na+ ratio. Under salinity, correlation of gas exchange measurements showed strong positive correlations between the traits, Anet, gs, Ci and E indicated the role of stomatal function. It was inferred that sequestration of NaCl by the salt tolerant individuals was through compartmentalization of Na+ and its detoxification by maintenance of K+/Na+ ratio. Totally, 33 QTL were identified under salinity and control conditions. Co-localization of QTL regulating Na+ and K+ transport substantiated their influence in salinity tolerance which could be due to the closely linked genes or by pleiotropic effect of same genes on these traits. Fine mapping with more molecular markers will locate the QTL precisely and validating with field trails could hasten the traditional methods for salinity breeding.


Eucalyptus NaCl stress SSR markers Quantitative trait loci 



The authors acknowledge Indian Council of Forestry Research and Education (ICFRE) for financial support. Senior Research Fellowship provided to V. Subashini by ICFRE is acknowledged.

Authors’ contributions

VSU conducted salt tolerance experiments, SSR genotyping, data analysis and drafted the manuscript. VKWB conducted field establishment and vegetative propagation, AM, BN and VSI carried out the controlled pollination and hybrid establishment, VSI participated in data analysis, RY conceived, organized and planned the research and finalised the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

40502_2018_403_MOESM1_ESM.pdf (147 kb)
Supplementary Table S1: Salinity tolerance grouping of parents and hybrids of E. camaldulensis (Ec7) × E. tereticornis (Et88) under NaCl stress. (PDF 147 kb)
40502_2018_403_MOESM2_ESM.pdf (37 kb)
Supplementary Table S2: Estimated correlations between measured traits for hybrid population of E. camaldulensis (Ec7) × E. tereticornis (Et88) in control and NaCl stress. (PDF 36 kb)
40502_2018_403_MOESM3_ESM.pdf (733 kb)
Supplementary Fig S1: Frequency distribution of various phenotypic traits estimated in Eucalyptus camaldulensis (Ec7) × E. tereticornis (Et88) under control and salinity treatment. (PDF 732 kb)


  1. Abbruzzese, G., Beritognolo, I., Muleo, R., Piazzai, M., Sabatti, M., Mugnozza, G. S., et al. (2009). Leaf morphological plasticity and stomatal conductance in three Populus alba L. genotypes subjected to salt stress. Environmental and Experimental Botany, 66, 381–388.CrossRefGoogle Scholar
  2. Adams, M. A., Richter, A., Hill, A. K., & Colmer, T. D. (2005). Salt tolerance in Eucalyptus spp.: Identity and response of putative osmolytes. Plant, Cell and Environment, 28, 772–787.CrossRefGoogle Scholar
  3. Allen, J. A., Chmabers, J. L., & Stine, M. (1994). Prospects for increasing the salt tolerance of forest trees: A review. Tree Physiology, 14, 843–853.CrossRefGoogle Scholar
  4. Azadi, A., Mardi, M., Hervan, E. M., Mohammadi, S. A., Moradi, F., Tabatabaee, M. T., et al. (2015). QTL mapping of yield and yield components under normal and saltstress conditions in bread wheat (Triticum aestivum L.). Plant Molecular Biology Reporter, 33, 102–120.CrossRefGoogle Scholar
  5. Canavar, O., Gotz, K. P., Ellmer, F., Chmielewski, F. M., & Kaynak, M. A. (2014). Determination of the relationship between water use efficiency, carbon isotope discrimination and proline in sunflower genotypes under drought stress. Australian Journal of Crop Science, 8, 232–242.Google Scholar
  6. Cha-um, S., Somsueb, S., Samphumphuang, T., & Kirdmanee, C. (2013). Salt tolerant screening in eucalypt genotypes (Eucalyptus spp.) using photosynthetic abilities, proline accumulation, and growth characteristics as effective indices. In Vitro Cellular & Developmental Biology—Plant, 49, 611–619.CrossRefGoogle Scholar
  7. Chen, S., & Polle, A. (2009). Salinity tolerance of Populus. Plant Biology, 12, 317–333.CrossRefGoogle Scholar
  8. Chunthaburee, S., Dongsansuk, A., Sanitchon, J., Pattanagul, W., & Theerakulpisut, P. (2016). Physiological and biochemical parameters for evaluation and clustering of rice cultivars differing in salt tolerance at seedling stage. Saudi Journal of Biological Sciences, 23, 467–477.CrossRefGoogle Scholar
  9. Dale, G., & Dieters, M. (2007). Economic returns from environmental problems: Breeding salt- and drought tolerant eucalypts for salinity abatement and commercial forestry. Ecological Engineering, 31, 175–182.CrossRefGoogle Scholar
  10. Dale, G., T., Aitken, K., S., & Sasse, J., M. (2000). Development of salt tolerant E. camaldulensis x E. grandis hybrid clones using phenotypic selection and genetic mapping. In: Proceedings of QFRI/CRC-SPF symposium on hybrid breeding and genetics of forest trees. Noosa, Australia (pp. 227–233).Google Scholar
  11. De Leon, T. B., Linscombe, S., Gregorio, G., & Subudhi, P. K. (2015). Genetic variation in Southern USA rice genotypes for seedling salinity tolerance. Frontiers in Plant Science, 6, 374.PubMedPubMedCentralGoogle Scholar
  12. F. A. O. (2005) Salt-affected soils from sea water intrusion: Strategies for rehabilitation and management. Report of the regional workshop. Bangkok, Thailand, 62 pp.Google Scholar
  13. Fan, P., Feng, J., Jiang, P., Chen, X., Bao, H., Nie, L., et al. (2011). Coordination of carbon fixation and nitrogen metabolism in Salicornia europaea under salinity: Comparative proteomic analysis on chloroplast proteins. Proteomics, 11, 4346–4367.CrossRefGoogle Scholar
  14. Farrell, R. C. C., Bell, D. T., Akilan, K., & Marshall, J. K. (1996). Morphological and physiological comparisons of clonal lines of Eucalyptus camaldulensis. II. Responses to waterlogging/salinity and alkalinity. Australian Journal of Plant Physiology, 23, 509–518.Google Scholar
  15. Feikema, P. M., Sasse, J. M., & Bandara, G. D. (2012). Chloride content and biomass partitioning in Eucalyptus hybrids grown on saline sites. New Forests, 43, 89–107.CrossRefGoogle Scholar
  16. Freeman, J. S. (2014). Molecular linkage maps of Eucalyptus: Strategies, resources and achievements. In R. J. Henry & C. Kole (Eds.), Genetics, genomics and breeding of eucalypts (pp. 58–74). Boca Raton: CRC Press.Google Scholar
  17. Ghomi, K., Rabiei, B., Sabouri, H., & Sabouri, A. (2013). Mapping QTLs for traits related to salinity tolerance at seedling stage of rice (Oryza sativa L.): An agrigenomics study of an Iranian rice population. OMICS: A Journal of Integrative Biology, 17, 242–251.CrossRefGoogle Scholar
  18. Ghoulam, C., Foursy, A., & Fares, K. (2002). Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany, 47, 39–50.CrossRefGoogle Scholar
  19. Grattapaglia, D., Mamani, E., Silva-Junior, O. B., & Faria, D. A. (2015). A novel genome wide microsatellite resource for species of Eucalyptus with linkage-to-physical correspondence on the reference genome sequence. Molecular Ecological Research, 15, 437–448.CrossRefGoogle Scholar
  20. Gregorio, G. B., Senadhira, D., & Mendoza, R. D. (1997). Screening rice for salinity tolerance. Laguna Philippines: International Rice Research Institute, 1997, 1–30.Google Scholar
  21. Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. International Journal of Genomics. Scholar
  22. Harfouche, A., Meilan, R., & Altman, A. (2014). Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. Tree Physiology, 34, 1181–1198.CrossRefGoogle Scholar
  23. Hauser, F., & Horie, T. (2010). A conserved primary salt tolerance mechanism mediated by HKT transporters: A mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant, Cell and Environment, 33, 552–565.CrossRefGoogle Scholar
  24. Horie, T., Hauser, F., & Schroeder, J. I. (2009). HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends in Plant Science, 14, 660–668.CrossRefGoogle Scholar
  25. Jaarsma, R., de Vries, R. S. M., & de Boer, A. H. (2013). Effect of salt stress on growth, Na+ accumulation and proline metabolism in potato (Solanum tuberosum) cultivars. PLoS ONE, 8, e60183.CrossRefGoogle Scholar
  26. Liu, W., Fairbairn, D. J., Reid, R. J., & Schachtman, D. P. (2001). Characterization of two HKT1 homologues from Eucalyptus camaldulensis that display intrinsic osmosensing capability. Plant Physiology, 127, 283–294.CrossRefGoogle Scholar
  27. Lopez-Climent, M. F., Arbona, V., Perez-Clemente, R. M., & Gomez-Cadenas, A. (2008). Relationship between salt tolerance and photosynthetic machinery performance in citrus. Environmental and Experimental Botany, 62, 176–184.CrossRefGoogle Scholar
  28. Lutts, S., Kinet, J. M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78, 389–398.CrossRefGoogle Scholar
  29. Madejón, P., Marañón, T., Navarro-Fernández, C. M., Domínguez, M. T., Alegre, J. M., Robinson, B., et al. (2017). Potential of Eucalyptus camaldulensis for phytostabilization and biomonitoring of trace-element contaminated soils. PLoS ONE, 12, e0180240. Scholar
  30. Mandal, A. K., Sharma, R. C., Singh. G., & Dagar, J.C. (2010) Computerized Database on Salt Affected Soils in India. Technical Bulletin No.2/2010. Central Soil Salinity Research Institute, Karnal pp 28.Google Scholar
  31. Marcar, N. (2016). Prospects for managing salinity in Southern Australia using trees on farmland. In J. C. Dagar & P. Minhas (Eds.), Agroforestry for the management of waterlogged saline soils and poor-quality waters. Delhi: Springer.Google Scholar
  32. Marcar, N. E. (1993). Waterlogging Modifies Growth, Water Use and Ion Concentrations in Seedlings of Salt-Treated Eucalyptus camaldulensisE. tereticornis, E. robusta and E. globulus. Australian Journal of Plant Physiology, 20, 1–13.Google Scholar
  33. Munns, R. (2005). Genes and salt tolerance: Bringing them together. New Phytologist, 167, 645–663.CrossRefGoogle Scholar
  34. Poss, J. A., Grattan, S. R., Suarez, D. L., & Grieve, C. M. (2000). Stable carbon isotope discrimination: An indicator of cumulative salinity and boron stress in Eucalyptus camaldulensis. Tree Physiology, 20, 1121–1127.CrossRefGoogle Scholar
  35. Puram, V. R. R., Ontoy, J., & Subudhi, P. K. (2018). Identification of QTLs for salt tolerance traits and prebreeding lines with enhanced salt tolerance in an introgression line population of rice. Plant Molecular Biology Reporter. Scholar
  36. Pushpavalli, R., Krishnamurthy, L., Thudi, M., Gaur, P. M., Rao, M. V., Siddique, K. H., et al. (2015). Two key genomic regions harbour QTLs for salinity tolerance in ICCV 2 × JG 11 derived chickpea (Cicer arietinum L.) recombinant inbred lines. BMC Plant Biology, 15, 1.CrossRefGoogle Scholar
  37. Rangani, J., Parida, A. K., Panda, A., & Kumari, A. (2016). Coordinated changes in antioxidative enzymes protect the photo synthetic machinery from salinity induced oxidative damage and confer salt tolerance in an extreme halophyte Salvadora persica L. Frontiers in Plant Science, 7, 50.CrossRefGoogle Scholar
  38. Rattan, A., Kapoor, D., Kapoor, N., & Bhardwaj, R. (2014). Application of brassionsteroids reverses the inhibitory effect of salt stress on growth and photosynthetic activity of Zea mays plants. Theoretical and Applied Genetics, 6, 13–22.Google Scholar
  39. Shanthi, K., Bachpai, V. K., Anisha, S., Ganesan, M., Anithaa, R. G., Subashini, V., et al. (2015). Micropropagation of Eucalyptus camaldulensis for the production of rejuvenated stock plants for microcuttings propagation and genetic fidelity assessment. New Forests, 46, 357–371.CrossRefGoogle Scholar
  40. Sixto, H., Grau, J. M., Alba, N., & Alia, R. (2005). Response to sodium chloride in different species and clones of genus Populus L. Forestry, 78, 93–104.CrossRefGoogle Scholar
  41. Sixto, H., González-González, B. D., Molina-Rueda, J. J., Garrido-Aranda, A., Sanchez, M. M., & López, G., et al. (2016). Eucalyptus spp. and Populus spp. coping with salinity stress: an approach on growth, physiological and molecular features in the context of short rotation coppice (SRC). Trees. CrossRefGoogle Scholar
  42. Stevens, J., Senaratna, T., & Sivasithamparam, K. (2006). Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): Associated changes in gas exchange, water relations and membrane stabilization. Plant Growth Regulation, 49, 77–83.Google Scholar
  43. Subashini, V., Shanmugapriya, A., & Yasodha, R. (2014). Hybrid purity assessment in Eucalyptus F1 hybrids using microsatellite markers. 3. Biotech, 4, 367–373.Google Scholar
  44. Thumma, B. R., Baltunis, B. S., Bell, J. C., Emebiri, L. C., Moran, G. F., & Southerton, S. G. (2010). Quantitative trait locus (QTL) analysis of growth and vegetative propagation traits in Eucalyptus nitens full-sib families. Tree Genetics & Genomes, 6, 877–889.CrossRefGoogle Scholar
  45. Vales, M. I., Schon, C. C., Capettini, F., Chen, X. M., Corey, A. E., Mather, D. E., et al. (2005). Effect of population size on the estimation of QTL: A test using resistance to barley stripe rust. Theoretical and Applied Genetics, 111, 1260–1270.CrossRefGoogle Scholar
  46. Van der Moezel, P. G., Watson, L. E., & Bell, D. T. (1989). Gas exchange responses of two Eucalyptus species to salinity and water logging. Tree Physiology, 5, 251–257.CrossRefGoogle Scholar
  47. Voorrips, R. E. (2002). MapChart: Software for the graphical presentation of linkage maps and QTLs. The Journal of Heredity, 93, 77–78.CrossRefGoogle Scholar
  48. Wang, M., Zheng, Q., Shen, Q., & Guo, S. (2013). The Critical role of potassium in plant stress response. International Journal of Molecular Sciences, 14, 7370–7390.CrossRefGoogle Scholar
  49. Wang, Z., Chen, Z., Cheng, J., Lai, Y., Wang, J., Bao, Y., et al. (2012). QTL Analysis of Na + and K + concentrations in roots and shoots under different levels of NaCl stress in rice (Oryza sativa L.). PLoS ONE, 7, e51202.CrossRefGoogle Scholar
  50. Waters, S., Gilliham, M., & Hrmova, M. (2013). Plant High-Affinity Potassium (HKT) transporters involved in salinity tolerance: Structural insights to probe differences in ion selectivity. International Journal of Molecualr Sciences, 14, 7660–7680.CrossRefGoogle Scholar
  51. Yamaguchi, T., & Blumwald, E. (2005). Developing salt-tolerant crop plants: Challenges and opportunities. Trends Plant Sciences, 10, 615–620.CrossRefGoogle Scholar
  52. Yu, J., Chen, S., Zhao, Q., Wang, T., Yang, C., Diaz, C., et al. (2011). Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. Journal of Proteome Research, 10, 3852–3870.CrossRefGoogle Scholar
  53. Zhang, L., Meng, L., Wu, W., & Wang, J. (2015). GACD: Integrated Software for Genetic Analysis in Clonal F1 and Double Cross Populations. Journal of Heredity, 106, 741–744.PubMedGoogle Scholar
  54. Zhang, Z., Liu, J., Ding, X., Bijma, P., de Koning, D. J., & Zhang, Q. (2010). Best linear unbiased prediction of genomic breeding values using a trait-specific marker-derived relationship matrix. PLoS ONE, 5, e12648.CrossRefGoogle Scholar
  55. Zhu, M., Shabala, S., Shabala, L., Fan, Y., & Zhou, M. X. (2015). Evaluating predictive values of various physiological indices for salinity stress tolerance in wheat. Journal of Agronomy and Crop Science, 202, 115–124.CrossRefGoogle Scholar
  56. Zubrinich, T. M., Loveys, B., Gallasch, S., Seekamp, J. V., & Tyerman, S. D. (2000). Tolerance of salinized floodplain conditions in a naturally occurring Eucalyptus hybrid related to lowered plant water potential. Tree Physiology, 20, 953–63CrossRefGoogle Scholar

Copyright information

© Indian Society for Plant Physiology 2018

Authors and Affiliations

  • V. Subashini
    • 1
  • V. K. W. Bachpai
    • 1
  • A. Mayavel
    • 1
  • B. Nagarajan
    • 1
  • V. Sivakumar
    • 1
  • R. Yasodha
    • 1
    Email author
  1. 1.Institute of Forest Genetics and Tree BreedingCoimbatoreIndia

Personalised recommendations