Indian Journal of Plant Physiology

, Volume 23, Issue 3, pp 573–581 | Cite as

An efficient method for Agrobacterium-mediated genetic transformation of chilli pepper (Capsicum annuum L.)

  • Binod K. Mahto
  • Poonam Sharma
  • M. V. Rajam
  • Pallavolu M. ReddyEmail author
  • Swatismita Dhar-RayEmail author
Original Article


In this study, we have describe a highly efficient transformation protocol for two elite Indian cultivars of chilli pepper (Capsicum annuum L.), Pusa Sadabahar and Pusa Jwala. We used hypocotyls and cotyledons derived from young seedlings as explants, standardized regeneration medium for enhanced regeneration, and optimized parameters for promoting efficient transformation in these chilli cultivars. The optimized regeneration medium consisting of MS medium augmented with 1 mg l−1 indole-3-acetic acid and 5 mg l−1 6-benzyl amino purine induced profuse shoot regeneration from the hypocotyl and cotyledon explants, with a regeneration frequency of 81% in Pusa Sadabahar and 78% in Pusa Jwala. The transformation protocol was standardized using Agrobacterium tumefaciens strain LBA4404 harbouring pCAMBIA2301 construct with GUS reporter and NPT-II marker genes. The results demonstrated that the hypocotyl explants are more amenable to transformation than cotyledonary explants in both the cultivars studied. Further, co-cultivation of the hypocotyl explants with agrobacterial cells (OD600 = 0.2–0.5) for the duration of 72 h was found to be optimum for obtaining high transformation efficiency of about 30% in both the cultivars. The transgenic status of chilli transformants recovered in the selection medium having 30 mg l−1 kanamycin was confirmed by GUS activity, PCR, Southern and RT-PCR analyses. About 85–90% of rooted transgenic plants survived hardening and acclimatization processes. Using this protocol we produced several independent transgenic lines of each chilli cultivar.


Agrobacterium tumefaciens Chilli Cotyledon GUS expression Hypocotyl Transformation 



The research work was financed by the Department of Biotechnology (Grant No. BT/PR5399/AGR/36/722/2012), Government of India, to SD and MVR. BKM gratefully acknowledges Department of Science and Technology-INSPIRE (DST-INSPIRE), Government of India, for providing fellowship.


  1. Ahmad, N., Siddique, I., & Anis, M. (2006). Improved plant regeneration in Capsicum annuum L. from nodal segments. Biologia Plantarum, 50(4), 701–704.CrossRefGoogle Scholar
  2. Belletti, P., Marzachi, C., & Lanteri, S. (1998). Flow cytometric measurement of nuclear DNA content in Capsicum (Solanaceae). Plant Systematic and Evolution, 209, 85–91.CrossRefGoogle Scholar
  3. Christopher, T., & Rajam, M. V. (1996). Effect of genotype, explants and medium on in vitro regeneration of red pepper. Plant Cell, Tissue and Organ Culture, 46, 245–250.CrossRefGoogle Scholar
  4. Csillery, G. (2006). Pepper taxonomy and the botanical description of the species. Acta Agronomica Hungarica, 54(2), 151–166.CrossRefGoogle Scholar
  5. Delis, M., Garbaczewska, G., & Niemirowicz-szczytt, K. (2005). Differentiation of adventitious buds from capsicum annuum L. hypocotyls after co-culture with Agrobacterium tumefaciens. Acta Biologica Cracoviensia Series Botanica, 47/1, 193–198.Google Scholar
  6. Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13–15.Google Scholar
  7. FAO—Food and Agriculture Organization of the United Nations. (2014). FAOSTAT database, USA. Accessed 22 Feb 2017
  8. Gunay, A., & Rao, P. S. (1978). In vitro plant regeneration from hypocotyl and cotyledon explants of red pepper (Capsicum). Plant Science Letter, 11, 365–372.CrossRefGoogle Scholar
  9. Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: B-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal, 6(13), 3901–3907.CrossRefGoogle Scholar
  10. Joshi, A., & Kothari, S. L. (2007). High copper levels in the medium improves shoot bud differentiation and elongation from the cultured cotyledons of Capsicum annuum L. Plant Cell, Tissue and Organ Culture, 88, 127–133.CrossRefGoogle Scholar
  11. Ke, J., Khan, R., Johnson, T., Somers, D. A., & Das, D. (2001). High-efficiency gene transfer to recalcitrant plants by Agrobacterium tumefaciens. Plant Cell Reports, 20, 150–156.CrossRefGoogle Scholar
  12. Kehie, M., Kumaria, S., & Tandon, P. (2012). In vitro plantlet regeneration from nodal segments and shoot tips of Capsicum chinense Jacq. cv. Naga King Chili. 3Biotech, 2, 31–35.Google Scholar
  13. Ko, M. K., Soh, H., Kim, K., Kim, Y. S., & Im, K. (2007). Stable production of transgenic pepper plants mediated by Agrobacterium tumefaciens. HortScience, 42(6), 1425–1430.Google Scholar
  14. Kumar, R. V., Sharma, V. K., Chattopadhyay, B., & Chakraborty, S. (2012). An improved plant regeneration and Agrobacterium—mediated transformation of red pepper (Capsicum annuum L.). Physiology and Molecular Biology of Plants, 18(4), 357–364.CrossRefGoogle Scholar
  15. Lee, Y. H., Kim, H. S., Kim, J. Y., Jung, M., Park, Y. S., Lee, J. S., et al. (2004). A new selection method for pepper transformation: Callus-mediated shoot formation. Plant Cell Reports, 23, 50–58.PubMedGoogle Scholar
  16. Lee, S. J., Kim, B. D., & Paek, K. H. (1993). In vitro plant regeneration and Agrobacterium-mediated transformation from cotyledon explants of hot pepper (Capsicum annuum L. cv. Golden Tower). Korean Journal of Plant Tissue Culture, 20, 289–294.Google Scholar
  17. Li, D., Zhao, K., Xie, B., Zhang, B., & Luo, K. (2003). Establishment of a highly efficient transformation system for pepper (Capsicum annuum L.). Plant Cell Reports, 21, 785–788.PubMedGoogle Scholar
  18. Liu, W., Parrott, W. A., Hildebrand, D. F., Collins, G. B., & Williams, E. G. (1990). Agrobacterium-induced gall formation in bell pepper (Capsicum annuum L.) and formation of shoot-like structures expressing introduced genes. Plant Cell Reports, 9, 360–364.PubMedGoogle Scholar
  19. Maligeppagol, M., Manjula, R., Navale, P. M., Babu, K. P., Kumbar, B. M., & Laxman, R. H. (2016). Genetic transformation of chilli (Capsicum annuum L.) with Dreb1A transcription factor known to impart drought tolerance. Indian Journal of Biotechnology, 15, 17–24.Google Scholar
  20. Manoharan, M., SreeVidya, C. S., & Lakshmi, S. G. (1998). Agrobacterium-mediated genetic transformation in hot chilli (Capsicum annuum L. var. Pusa jwala). Plant Science, 13, 77–83.CrossRefGoogle Scholar
  21. Mok, S. H., & Norzulaani, K. (2007). Trouble shooting for recalcitrant bud formation in Capsicum annuum var. Kulai. Asia Pacific Journal of Molecular Biology and Biotechnology, 15, 33–38.Google Scholar
  22. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.CrossRefGoogle Scholar
  23. Prakash, D. P., Deepali, B. S., Asokan, R., Ramachandra, Y. L., Anand, L., & Hanur, V. S. (2007). Effects of growth regulators and explant-type on Agrobacterium-mediated transformation in brinjal (Solanum melongena L.) cv. Manjarigota. Journal of Horticulture Science, 2, 94–98.Google Scholar
  24. Prakash, Α. Η., Rao, Κ. S., & Kumar, Μ. U. (1997). Plant regeneration from protoplasts of Capsicum annuum L. cv. California Wonder. Journal of Bioscience, 22, 339–344.CrossRefGoogle Scholar
  25. Ramirez-Malagon, R., & Ochoa-Alejo, N. (1996). An improved and reliable chili pepper (Capsicum annuum L.) plant regeneration method. Plant Cell Reports, 16, 226–231.CrossRefGoogle Scholar
  26. Ray, S., Kapoor, S., & Tyagi, A. K. (2011). Analysis of transcriptional and upstream regulatory sequence activity of two environmental stress-inducible genes, NBS-Str1 and BLECStr8, of rice. Transgenic Research, 21, 351–366.CrossRefGoogle Scholar
  27. Sambrook, J., Fritsch, E. F., & Maniates, T. (1989). Molecular cloning: A laboratory manual (2nd ed.). New York: Cold Spring Harbor Laboratory Press.Google Scholar
  28. Steinitz, B., Wolf, D., Matzevitch-Josef, T., & Zelcer, A. (1999). Regeneration in vitro and genetic transformation of pepper (Capsicum spp.): The current state of the art. Capsicum and Eggplant Newsletter, 18, 9–15.Google Scholar
  29. Verma, S., Dhiman, K., & Srivastava, D. K. (2013a). Efficient in vitro regeneration from cotyledon explants in bell pepper (Capsicum annuum L. Cv. California wonder). International Journal of Advanced Biotechnology and Research, 4(3), 391–396.Google Scholar
  30. Verma, S., Dhiman, K., & Srivastava, D. K. (2013b). Agrobacterium-mediated genetic transformation of bell pepper (Capsicum annuum L. Cv. California wonder). International Journal of Advanced Biotechnology and Research, 4(3), 397–403.Google Scholar
  31. Wilkinson, J. E., Twell, D., & Lindsey, K. (1997). Activities of CaMV 35S and nos promoters in pollen: Implications for field release of transgenic plants. Journal of Experimental Botany, 48, 265–275.CrossRefGoogle Scholar

Copyright information

© Indian Society for Plant Physiology 2018

Authors and Affiliations

  1. 1.TERI School of Advanced StudiesNew DelhiIndia
  2. 2.Division of Sustainable AgricultureThe Energy and Resources Institute (TERI)New DelhiIndia
  3. 3.Department of GeneticsUniversity of Delhi South CampusNew DelhiIndia

Personalised recommendations