Photosynthetic efficiency among Indian peanut cultivars and influence of seasonal variation and zinc

  • A. L. Singh
  • R. N. Nakar
  • V. Chaudhari
  • K. Chakraborty
  • K. A. Kalariya
  • K. Gangadhara
  • S. K. Bishi
  • C. B. Patel
  • Sushmita Singh
Original Article
  • 16 Downloads

Abstract

Sixty high yielding Indian peanut cultivars were studied for net photosynthesis (PN), transpiration (E), stomatal conductance (g s ), water use efficiency (WUE), radiation use efficiency (RUE), SPAD chlorophyll meter reading (SCMR) and chlorophyll fluorescence (Fv/Fm) at 70–75 days and pod and fodder yields at harvest in field during both the Kharif (Wet) and Rabi-summer (Dry) seasons to find out the efficient cultivars and seasons. The dry season crop showed higher values of these parameters except E and Fv/Fm than that of wet season crop and application of Zn increased all these but reduced g s and SCMR. On an average, the peanut cultivars showed 29.9 and 19.4 µmol (CO2) m2 s–1 PN, 0.57 and 0.26 m s−1 g s , 11.4 and 13.2 m mol m−2 s−1 E, 2.67 and 1.49 WUE, 0.018 and 0.012 RUE, 38.2 and 36.3 SCMR and 0.843 and 0.850 Fv/Fm during dry and wet seasons, respectively. The foliar application of zinc as 0.2% zinc-sulphate, during dry season, influenced all these parameters, with an average of 30.6 and 29.3 µmol (CO2) m−2 s−1 PN, 0.54 and 0.60 m s−1 g s , 11.7 and 11.2 m mol m−2 s−1 E, 2.69 and 2.65 WUE, 0.019 and 0.018 RUE, 37.8 and 38.7 SCMR and 0.844 and 0.842 Fv/Fm with and without Zn, respectively. The study identified several photosynthetically efficient cultivars. There were 18 cultivars with high P N and g s , 18 cultivars with high PN and E and 17 cultivars with high PN and pod yield. Based on the overall performance the peanut cultivars being recommended are Tirupati 3, TG 37A, CSMG 884, RS 1, S 230, LGN 2, TPG 41 and SG 99 for dry season and GG 20, Tirupati 4, M 197, ALR 2, JL 501 and RG 141 for wet season.

Keywords

Chlorophyll fluorescence Net photosynthesis Pod yield Stomatal conductance Transpiration 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Arunyanark, A., Jogloy, S., Akkasaeng, C., Vorasoot, N., & Kesmala, T. (2008). Chlorophyll stability as an indicator of drought tolerance in peanut. Journal of Agronomy and Crop Science, 194, 113–125.CrossRefGoogle Scholar
  2. Bae, Y. S., Oh, H., Rhee, S. G., & Do Yoo, Y. D. (2011). Regulation of reactive oxygen species generation in cell signaling. Molecules and Cells, 32, 491–509.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Berger, J. D., Ali, M., Basu, P. S., Chaudhary, B. D., Chaturvedi, S. K., Deshmukh, P. S., et al. (2006). Genotype by environment studies demonstrate the critical role of phenology in adaptation of chickpea (Cicer arietinum L.) to high and low yielding environments of India. Field Crop Research, 98, 230–244.CrossRefGoogle Scholar
  4. Brito, G. G., Sofiatti, V., Brandao, Z., Silva, V. B., Silva, F. M., & Silva, D. A. (2011). Nondestructive analysis of photosynthetic pigments in cotton plants. Acta Scientiarum Agronomy, 33, 671–678.Google Scholar
  5. Cao, T., & Isoda, A. (2008). Dry matter production of Japanese and Chinese high-yielding cultivars in peanut under high planting population in terms of intercepted radiation and its use efficiency. Japanese Journal of Crop Science, 77, 41–47.CrossRefGoogle Scholar
  6. Evans, J. R. (2013). Improving photosynthesis. Plant Physiology, 162, 1780–1793.CrossRefPubMedPubMedCentralGoogle Scholar
  7. FAO. (2015). FAOSTAT database. http://faostat3.fao.org/download/Q/QC/E. Accessed Nov 2015.
  8. Fotovat, R., Valizadeh, M., & Toorchi, M. (2007). Association between water use efficiency components and total chlorophyll content (SPAD) in wheat (Tritichum aestivum L.) under well watered and drought stress conditions. Journal of Food, Agriculture and Environment, 5, 225–227.Google Scholar
  9. Havaux, M. (1993). Rapid photosynthetic adaptation to high temperature stress triggered in potato leaves by moderately elevated temperature. Plant Cell Environment, 16, 461–467.CrossRefGoogle Scholar
  10. Joseph, C. V. V. (2005). Acclimation of peanut (Arachis hypogaea L.) leaf photosynthesis to elevated growth CO2 and temperature. Environmental and Experimental Botany, 53, 85–95.CrossRefGoogle Scholar
  11. Kalariya, K. A., Singh, A. L., Chakraborty, K., Ajay, B. C., Zala, P. V., Patel, C. B., et al. (2017). SCMR: A more pertinent trait than SLA in peanut genotypes under transient water deficit Stress during summer. The Proceedings of the National Academy of Sciences, India, Section B: Biological Sciences, 87, 579–589.CrossRefGoogle Scholar
  12. Kalariya, K. A., Singh, A. L., Chakraborty, K., Zala, P. V., & Patel, C. B. (2013). Photosynthetic characteristics of Groundnut (Arachis hypogaea L.) under water deficit stress. Indian Journal of Plant Physiology, 18, 157–163.CrossRefGoogle Scholar
  13. Kalariya, K. A., Singh, A. L., Goswami, N., Mehta, D., Mahatma, M. K., Ajay, B. C., et al. (2015). Photosynthetic characteristics of peanut genotypes under excess and deficit irrigation during summer. Physiology and Molecular Biology of Plants, 21(3), 317–327.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Krishnamurthy, L., Vandez, V., Jyotsanadevi, M., Serraj, R., Nigam, S. N., Sheshayee, M. S., et al. (2007). Variation in transpiration efficiency and its related traits in a groundnut mapping population. Field Crop Research, 103, 189–197.CrossRefGoogle Scholar
  15. Liu, G., Yang, C., Xu, K., Zhang, Z., Li, D., Wu, Z., et al. (2012). Development of yield and some photosynthetic characteristics during 82 years of genetic improvement of soybean genotypes in northeast China. Australian Journal of Crop Science, 6, 1416–1422.Google Scholar
  16. Mao, H., Wang, J., Wang, Z., Zan, Y., Lyons, G., & Zou, C. (2014). Using agronomic biofortification to boost zinc, selenium, and iodine concentrations of food crops grown on the loess plateau in China. Journal of Soil Science and Plant Nutrition, 14, 459–470.Google Scholar
  17. Murchie, E. H., & Lawson, T. (2013). Chrolophyll fluorescence analysis: A guide practice and understanding some new applications. Journal of Experimental Botany, 64, 3983–3998.CrossRefPubMedGoogle Scholar
  18. Nakar, R. N., & Singh, A. L. (2013). Identification of efficient groundnut cultivars using chlorophyll fluorescence: Current trends in plant biology research. In A. L. Singh et al. (Eds.), National conference of plant physiology (pp. 397–398). Junagadh: DGR.Google Scholar
  19. Nautiyal, P. C., Nageswara Rao, R. C., & Joshi, Y. C. (2002). Moisture-deficit-induced changes in leaf-water content, leaf carbon exchange rate and biomass production in groundnut cultivars differing in specific leaf area. Field Crops Research, 74(1), 67–79.CrossRefGoogle Scholar
  20. Nautiyal, P. C., Ravindra, V., & Joshi, Y. C. (1999). Net photosynthesis rate in peanut (Arachis hypogaea L.) influence of leaf position, time of day and reproductive sink. Photosynthetica, 36, 129–138.CrossRefGoogle Scholar
  21. Nautiyal, P. C., Ravindra, V., Ratnakumar, A. L., Ajay, B. C., & Zala, P. V. (2012). Genetic variation in photosynthesis, pod yield and yield components in spanish groundnut cultivars during three cropping seasons. Field Crop Research, 125, 83–91.CrossRefGoogle Scholar
  22. Nigam, S. N., Chandra, S., Sridevi, K. R., Bhukta, M., Reddy, A. G. S., Nageshwara Rao, R., et al. (2005). Efficiency of physiological trait-based and empirical selection approaches for drought tolerance in groundnut. Annals of Applied Biology, 146, 433–439.CrossRefGoogle Scholar
  23. Rahbarian, R., Khavari, N. R., Ali, G., Bagheri, A., & Najafi, F. (2011). Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations in tolerant and succeptible chick pea (Cicer arietinum L.) genotypes. Acta Biologica Cracoviensia Series Botanica, 53, 47–56.Google Scholar
  24. Ravindra, V., Nautiyal, P. C., & Joshi, Y. C. (1990). Physiological analysis of drought resistance and yield in groundnut (Arachis hypogaea L.). Tropical Agriculture, 67(4), 290–296.Google Scholar
  25. Rosati, A., Metcalf, S. G., & Lampinen, B. D. (2004). A simple method to estimate photosynthetic radiation use efficiency of canopies. Annals of Botany, 93, 567–574.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Samdur, M. Y., Singh, A. L., Mathur, R. K., Manivel, P., Chikani, B. M., Gor, H. K., et al. (2000). Field evaluation of chlorophyll meter for screening groundnut (Arachis hypogaea L.) genotype tolerant to iron deficiency chlorosis. Current Science, 79, 211–214.Google Scholar
  27. Schreiber, U. (2004). Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In G. C. Papageorgiou & G. Govindjee (Eds.), Chlorophyll a fluorescence: A signature of photosynthesis (pp. 279–319). Dordrecht: Springer.CrossRefGoogle Scholar
  28. Shahenshah, & Isoda, A. (2010). Effects of water stress on leaf temperature and chlorophyll fluorescence parameters in cotton and peanut. Plant Production Science, 13, 269–278.CrossRefGoogle Scholar
  29. Sinclair, T. R. (2012). Is transpiration efficiency a viable plant trait in breeding for crop improvement? Functional Plant Biology, 39, 359–365.CrossRefGoogle Scholar
  30. Singh, A. L. (1994). Micronutrient nutrition and crop productivity in groundnut. In K. Singh & S. S. Purohit (Eds.), Plant productivity under environment stress (pp. 67–72). Bikaner: Agrobotanical Publishers.Google Scholar
  31. Singh, A. L. (2003). Phenology of groundnut. In A. Hemantranjan (Ed.), Advances in plant physiology (Vol. 6, pp. 295–382). Jodhpur: Scientific Publishers.Google Scholar
  32. Singh, A. L. (2004). Growth and physiology of groundnut. In M. S. Basu & N. B. Singh (Eds.), Groundnut research in India (pp. 178–212). Junagadh: National Research Center for Groundnut (ICAR).Google Scholar
  33. Singh, A. L. (2011). Physiological basis for realizing yield potentials in groundnut. In A. Hemantranjan (Ed.), Advances in plant physiology (Vol. 12, pp. 131–242). Jodhpur: Scientific Publishers.Google Scholar
  34. Singh, A. L., & Basu, M. S. (2005). Integrated nutrient management in groundnut—a farmer’s manual (p. 54). India: National Research Center for Groundnut (ICAR), Junagadh.Google Scholar
  35. Singh, A. L., Goswami, N., Nakar, R. N., Kalariya, K. A., & Chakraborty, K. (2014a). Physiology of groundnut under water deficit stress. In A. L. Singh (Ed.), Recent advances in crop physiology (Vol. 1, pp. 1–85). New Delhi: Astral International.Google Scholar
  36. Singh, A. L., & Joshi, Y. C. (1993). Comparative studies on the chlorophyll content, growth, N uptake and yield of groundnut varieties of different habit groups. Oleagineux, 48, 27–34.Google Scholar
  37. Singh, A. L., Nakar, R. N., Chakraborty, K., & Kalariya, K. A. (2014b). Physiological efficiencies in mini-core peanut germplasm accessions during summer season. Photosynthetica, 52, 627–635.CrossRefGoogle Scholar
  38. Singh, A. L., Nakar, R. N., Goswami, N., Kalariya, K. A., Chakraborty, K., & Singh, M. (2013a). Water deficit stress and its management in groundnuts. In A. Hemantranjan (Ed.), Advances in plant physiology (pp. 370–465). Jodhpur: Scientific Publishers.Google Scholar
  39. Singh, A. L., Nakar, R. N., Goswami, N., Mehta, D., Oza, S., Kalariya, K. A., et al. (2013b). FYM and fertilizer increases photosynthetic efficiency and fluorescence in groundnut. In A. L. Singh et al. (Eds.), Current trends in plant biology research (pp. 571–572). Junagadh: National Conference of Plant Physiology, DGR.Google Scholar
  40. Singh, D., Shamim, M., Pandey, R., & Kumar, Vipin. (2012). Growth and yield of wheat genotypes in relation to environmental constraints under timely sown irrigated conditions. Indian Journal of Plant Physiology, 17, 43–120.Google Scholar
  41. Vahid, T. (2017). Interactive effects of zinc and boron on growth, photosynthesis, and water relations in pistachio. Journal of Plant Nutrition, 40(11), 1588–1603.CrossRefGoogle Scholar
  42. Wright, G. C., Nageswara Rao, R. C., & Farquhar, G. D. (1994). Water-use efficiency and carbon isotope discrimination in peanut under water deficit conditions. Crop Science, 34, 92–97.CrossRefGoogle Scholar
  43. Zhao, K., & Wu, Y. (2017). Effects of Zn deficiency and bicarbonate on the growth and photosynthetic characteristics of four plant species. PLoS ONE, 12(1), e0169812.  https://doi.org/10.1371/journal.pone.0169812.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Zhu, Xin-Guang, Long, S. P., & Ort, D. R. (2010). Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology, 61, 235–261.CrossRefPubMedGoogle Scholar

Copyright information

© Indian Society for Plant Physiology 2018

Authors and Affiliations

  • A. L. Singh
    • 1
  • R. N. Nakar
    • 1
  • V. Chaudhari
    • 1
  • K. Chakraborty
    • 1
  • K. A. Kalariya
    • 1
  • K. Gangadhara
    • 1
  • S. K. Bishi
    • 1
  • C. B. Patel
    • 1
  • Sushmita Singh
    • 1
  1. 1.ICAR-Directorate of Groundnut ResearchJunagadhIndia

Personalised recommendations