Advertisement

Current Treatment Options in Psychiatry

, Volume 5, Issue 4, pp 452–458 | Cite as

Inflammation and Depression: the Neuroimmune Connection

  • Marisa ToupsEmail author
Invited Commentary
  • 24 Downloads

Abstract

Purpose

To update clinicians on the field of psychoneuroimmunology with respect to depression.

Recent findings

A significant subset of patients with depression may have illness to which dysfunction of the immune system, typically viewed as inflammation, makes a significant contribution. Normal sickness behavior may sometimes manifest abnormally as mood episodes. Early evidence suggests that interventions that reduce inflammation may improve symptoms in these patients and that they may also respond differently to standard pharmacotherapy.

Summary

Treatment of patients with depression should consider inflammatory status, as part of medical and psychiatric health. Recommendations for healthy diet and exercise are important for all patients but may be more important for patients who have clinical evidence of inflammation. Methods of identifying patients in the inflammatory subgroup and treating them with therapy targeted specifically at the immune system are still experimental but likely to impact care for depression in the future.

Keywords

Depression Immune System Inflamation Psychoneuroimmunology 

References and Recommended Reading

  1. 1.
    Akil H, Gordon J, Hen R, Javitch J, Mayberg H, McEwen B, et al. Treatment resistant depression: a multi-scale, systems biology approach. Neurosci Biobehav Rev. 2018;84:272–88.PubMedCrossRefGoogle Scholar
  2. 2.
    Ader R, Cohen N, Felten D. Psychoneuroimmunology: interactions between the nervous system and the immune system. Lancet. 1995;345(8942):99–103.PubMedCrossRefGoogle Scholar
  3. 3.
    Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46–56.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Hart BL. Biological basis of the behavior of sick animals. Neurosci Biobehav Rev. 1988;12(2):123–37.PubMedCrossRefGoogle Scholar
  5. 5.
    Obregon D, Parker-Athill EC, Tan J, Murphy T. Psychotropic effects of antimicrobials and immune modulation by psychotropics: implications for neuroimmune disorders. Neuropsychiatry (London). 2012;2(4):331–43.CrossRefGoogle Scholar
  6. 6.
    Capuron L, Miller AH. Cytokines and psychopathology: lessons from interferon-alpha. Biol Psychiatry. 2004;56(11):819–24.PubMedCrossRefGoogle Scholar
  7. 7.
    Schlaak JF, Trippler M, Hoyo-Becerra C, Erim Y, Kis B, Wang B, et al. Selective hyper-responsiveness of the interferon system in major depressive disorders and depression induced by interferon therapy. PLoS One. 2012;7(6):e38668.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Capuron L, Ravaud A, Neveu PJ, Miller AH, Maes M, Dantzer R. Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy. Mol Psychiatry. 2002;7(5):468–73.PubMedCrossRefGoogle Scholar
  9. 9.
    Anderson RJ, Freedland KE, Clouse RE, Lustman PJ. The prevalence of comorbid depression in adults with diabetes: a meta-analysis. Diabetes Care. 2001;24(6):1069–78.PubMedCrossRefGoogle Scholar
  10. 10.
    Evans DL, Charney DS, Lewis L, Golden RN, Gorman JM, Krishnan KR, et al. Mood disorders in the medically ill: scientific review and recommendations. Biol Psychiatry. 2005;58(3):175–89.PubMedCrossRefGoogle Scholar
  11. 11.
    Heiskanen TH, Niskanen LK, Hintikka JJ, Koivumaa-Honkanen HT, Honkalampi KM, Haatainen KM, et al. Metabolic syndrome and depression: a cross-sectional analysis. J Clin Psychiatry. 2006;67(9):1422–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Benros ME, Waltoft BL, Nordentoft M, Ostergaard SD, Eaton WW, Krogh J, et al. Autoimmune diseases and severe infections as risk factors for mood disorders: a nationwide study. JAMA Psychiatry. 2013;70(8):812–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Currier MB, Nemeroff CB. Depression as a risk factor for cancer: from pathophysiological advances to treatment implications. Annu Rev Med. 2014;65:203–21.PubMedCrossRefGoogle Scholar
  14. 14.
    Goldbacher EM, Bromberger J, Matthews KA. Lifetime history of major depression predicts the development of the metabolic syndrome in middle-aged women. Psychosom Med. 2009;71(3):266–72.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lunetta C, Lizio A, Maestri E, Sansone VA, Mora G, Miller RG, et al. Serum C-reactive protein as a prognostic biomarker in amyotrophic lateral sclerosis. JAMA Neurol. 2017;74(6):660–7.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Nagel G, Peter RS, Rosenbohm A, Koenig W, Dupuis L, Rothenbacher D, et al. Adipokines, C-reactive protein and amyotrophic lateral sclerosis - results from a population- based ALS registry in Germany. Sci Rep. 2017;7(1):4374.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15(9):545–58.PubMedCrossRefGoogle Scholar
  18. 18.
    Rabkin JG, Albert SM, Del Bene ML, O'Sullivan I, Tider T, Rowland LP, et al. Prevalence of depressive disorders and change over time in late-stage ALS. Neurology. 2005;65(1):62–7.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Trail M, Nelson ND, Van JN, Appel SH, Lai EC. A study comparing patients with amyotrophic lateral sclerosis and their caregivers on measures of quality of life, depression, and their attitudes toward treatment options. J Neurol Sci. 2003;209(1–2):79–85.PubMedCrossRefGoogle Scholar
  20. 20.
    Feinstein A, Magalhaes S, Richard JF, Audet B, Moore C. The link between multiple sclerosis and depression. Nat Rev Neurol. 2014;10(9):507–17.PubMedCrossRefGoogle Scholar
  21. 21.
    Haapakoski R, Mathieu J, Ebmeier KP, Alenius H, Kivimaki M. Cumulative meta-analysis of interleukins 6 and 1beta, tumour necrosis factor alpha and C-reactive protein in patients with major depressive disorder. Brain Behav Immun. 2015;49:206–15.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    D'Agostino RB, Sr., Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 2008;117(6):743–753.Google Scholar
  23. 23.
    Irwin MR, Levin MJ, Carrillo C, Olmstead R, Lucko A, Lang N, et al. Major depressive disorder and immunity to varicella-zoster virus in the elderly. Brain Behav Immun. 2011;25(4):759–66.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Andersson NW, Goodwin RD, Okkels N, Gustafsson LN, Taha F, Cole SW, et al. Depression and the risk of severe infections: prospective analyses on a nationwide representative sample. Int J Epidemiol. 2016;45(1):131–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Nathan C. Points of control in inflammation. Nature. 2002;420(6917):846–52.PubMedCrossRefGoogle Scholar
  26. 26.
    Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.PubMedCrossRefGoogle Scholar
  27. 27.
    Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol. 2015;16(4):343–53.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Serhan CN, Savill J. Resolution of inflammation: the beginning programs the end. Nat Immunol. 2005;6(12):1191–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Brydon L, Harrison NA, Walker C, Steptoe A, Critchley HD. Peripheral inflammation is associated with altered substantia nigra activity and psychomotor slowing in humans. Biol Psychiatry. 2008;63(11):1022–9.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Rivest S. How circulating cytokines trigger the neural circuits that control the hypothalamic-pituitary-adrenal axis. Psychoneuroendocrinology. 2001;26(8):761–88.PubMedCrossRefGoogle Scholar
  31. 31.
    Harrison NA, Brydon L, Walker C, Gray MA, Steptoe A, Critchley HD. Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol Psychiatry. 2009;66(5):407–14.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Brod S, Rattazzi L, Piras G, D'Acquisto F. “As above, so below” examining the interplay between emotion and the immune system. Immunology. 2014;143(3):311–8.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Anders S, Tanaka M, Kinney DK. Depression as an evolutionary strategy for defense against infection. Brain Behav Immun. 2013;31:9–22.PubMedCrossRefGoogle Scholar
  34. 34.
    Raison CL, Lowry CA, Rook GA. Inflammation, sanitation, and consternation: loss of contact with coevolved, tolerogenic microorganisms and the pathophysiology and treatment of major depression. Arch Gen Psychiatry. 2010;67(12):1211–24.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Minihane AM, Vinoy S, Russell WR, Baka A, Roche HM, Tuohy KM, et al. Low-grade inflammation, diet composition and health: current research evidence and its translation. Br J Nutr. 2015;114(7):999–1012.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Sanhueza C, Ryan L, Foxcroft DR. Diet and the risk of unipolar depression in adults: systematic review of cohort studies. J Hum Nutr Diet. 2013;26(1):56–70.PubMedCrossRefGoogle Scholar
  37. 37.
    Chocano-Bedoya PO, O'Reilly EJ, Lucas M, Mirzaei F, Okereke OI, Fung TT, et al. Prospective study on long-term dietary patterns and incident depression in middle-aged and older women. Am J Clin Nutr. 2013;98(3):813–20.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Lucas M, Chocano-Bedoya P, Schulze MB, Mirzaei F, O'Reilly EJ, Okereke OI, et al. Inflammatory dietary pattern and risk of depression among women. Brain Behav Immun. 2014;36:46–53.PubMedCrossRefGoogle Scholar
  39. 39.
    Ehlert U. Enduring psychobiological effects of childhood adversity. Psychoneuroendocrinology. 2013;38(9):1850–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Su S, Jimenez MP, Roberts CT, Loucks EB. The role of adverse childhood experiences in cardiovascular disease risk: a review with emphasis on plausible mechanisms. Curr Cardiol Rep. 2015;17(10):88.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Baumeister D, Akhtar R, Ciufolini S, Pariante CM, Mondelli V. Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-alpha. Mol Psychiatry. 2016;21(5):642–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Coelho R, Viola TW, Walss-Bass C, Brietzke E, Grassi-Oliveira R. Childhood maltreatment and inflammatory markers: a systematic review. Acta Psychiatr Scand. 2014;129(3):180–92.PubMedCrossRefGoogle Scholar
  43. 43.
    Tursich M, Neufeld RW, Frewen PA, Harricharan S, Kibler JL, Rhind SG, et al. Association of trauma exposure with proinflammatory activity: a transdiagnostic meta-analysis. Transl Psychiatry. 2014;4:e413.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Miller GE, Chen E, Parker KJ. Psychological stress in childhood and susceptibility to the chronic diseases of aging: moving toward a model of behavioral and biological mechanisms. Psychol Bull. 2011;137(6):959–97.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Hostinar CE, Lachman ME, Mroczek DK, Seeman TE, Miller GE. Additive contributions of childhood adversity and recent stressors to inflammation at midlife: findings from the MIDUS study. Dev Psychol. 2015;51(11):1630–44.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Lin JE, Neylan TC, Epel E, O'Donovan A. Associations of childhood adversity and adulthood trauma with C-reactive protein: a cross-sectional population-based study. Brain Behav Immun. 2016;53:105–12.PubMedCrossRefGoogle Scholar
  47. 47.
    Hedayati SS, Gregg LP, Carmody T, Jain N, Toups M, Rush AJ, et al. Effect of sertraline on depressive symptoms in patients with chronic kidney disease without dialysis dependence: the CAST randomized clinical trial. JAMA. 2017;318(19):1876–90.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    O'Brien SM, Scully P, Fitzgerald P, Scott LV, Dinan TG. Plasma cytokine profiles in depressed patients who fail to respond to selective serotonin reuptake inhibitor therapy. J Psychiatr Res. 2007;41(3–4):326–31.PubMedCrossRefGoogle Scholar
  49. 49.
    Jha MK, Minhajuddin A, Gadad BS, Greer T, Grannemann B, Soyombo A, et al. Can C-reactive protein inform antidepressant medication selection in depressed outpatients? Findings from the CO-MED trial. Psychoneuroendocrinology. 2017;78:105–13.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Uher R, Tansey KE, Dew T, Maier W, Mors O, Hauser J, et al. An inflammatory biomarker as a differential predictor of outcome of depression treatment with escitalopram and nortriptyline. Am J Psychiatry. 2014;171(12):1278–86.PubMedCrossRefGoogle Scholar
  51. 51.
    Kappelmann N, Lewis G, Dantzer R, Jones PB, Khandaker GM. Antidepressant activity of anti-cytokine treatment: a systematic review and meta-analysis of clinical trials of chronic inflammatory conditions. Mol Psychiatry. 2018;23(2):335–43.PubMedCrossRefGoogle Scholar
  52. 52.
    Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry. 2013;70(1):31–41.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Kohler O, Benros ME, Nordentoft M, Farkouh ME, Iyengar RL, Mors O, et al. Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry. 2014;71(12):1381–91.PubMedCrossRefGoogle Scholar
  54. 54.
    Eyre HA, Air T, Proctor S, Rositano S, Baune BT. A critical review of the efficacy of non-steroidal anti-inflammatory drugs in depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2015;57:11–6.CrossRefGoogle Scholar
  55. 55.
    Palmefors H, DuttaRoy S, Rundqvist B, Borjesson M. The effect of physical activity or exercise on key biomarkers in atherosclerosis--a systematic review. Atherosclerosis. 2014;235(1):150–61.PubMedCrossRefGoogle Scholar
  56. 56.
    Greer TL, Trivedi MH. Exercise in the treatment of depression. Curr Psychiatry Rep. 2009;11(6):466–72.PubMedCrossRefGoogle Scholar
  57. 57.
    Rethorst CD, Toups MS, Greer TL, Nakonezny PA, Carmody TJ, Grannemann BD, et al. Pro-inflammatory cytokines as predictors of antidepressant effects of exercise in major depressive disorder. Mol Psychiatry. 2013;18(10):1119–24.PubMedCrossRefGoogle Scholar
  58. 58.
    Eyre HA, Baune BT. Assessing for unique immunomodulatory and neuroplastic profiles of physical activity subtypes: a focus on psychiatric disorders. Brain Behav Immun. 2014;39:42–55.PubMedCrossRefGoogle Scholar
  59. 59.
    Opie RS, O'Neil A, Itsiopoulos C, Jacka FN. The impact of whole-of-diet interventions on depression and anxiety: a systematic review of randomised controlled trials. Public Health Nutr. 2015;18(11):2074–93.PubMedCrossRefGoogle Scholar
  60. 60.
    Bloch MH, Hannestad J. Omega-3 fatty acids for the treatment of depression: systematic review and meta-analysis. Mol Psychiatry. 2012;17(12):1272–82.PubMedCrossRefGoogle Scholar
  61. 61.
    Ulfvebrand S, Birgegard A, Norring C, Hogdahl L, von Hausswolff-Juhlin Y. Psychiatric comorbidity in women and men with eating disorders results from a large clinical database. Psychiatry Res. 2015;230(2):294–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of PsychiatryUniversity of Texas Dell Medical SchoolAustinUSA

Personalised recommendations