Current Oral Health Reports

, Volume 6, Issue 1, pp 37–46 | Cite as

Epigenetics, Inflammation, and Periodontal Disease

  • Manjunatha R. BenakanakereEmail author
  • Livia Finoti
  • Daniela B. Palioto
  • Hellen S. Teixeira
  • Denis F. Kinane
Systemic Diseases (N Buduneli, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Systemic Diseases


Purpose of the Review

The purpose is to provide current knowledge and recent development and understanding of periodontal disease dysbiosis in the perspective of epigenetic changes. Epigenetic changes, where environmental factors modify the gene expression network without changing the DNA sequence, may influence inflammatory diseases such as chronic periodontitis. These chemical modifications of DNA and histone proteins cause epigenetic changes that alter cellular function and host defenses.

Recent Findings

Findings suggest that the methylation of cytosine residues on DNA particularly at CpG Islands is commonly associated with gene silencing, and covalent modifications on histones are associated with chromatin structural integrity and function that play crucial roles in gene expression. In periodontal immune dysbiosis, aberrant DNA methylation and/or histone modifications could potentially play a role in disease state.


We broadly discuss epigenetic modifications related to immune regulation and comprehensively discuss recent developments in the dynamics of epigenetic changes pertaining to chronic inflammatory periodontal disease.


Epigenetic regulation Immune regulation Periodontal disease dysbiosis DNA methylation Histone modifications 


Funding information

This work was partially supported by United States Public Health Service, National Institutes of Health, NIDCR grant DE017384 and by the internal funding of the University of Pennsylvania to DFK and MRB.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Marsh D. Darwin’s passionate environmentalism or the dangerous fallacy of the ‘All-sufficiency of natural selection’ theory. Nutr Health. 2012;21(1):76–90.CrossRefGoogle Scholar
  2. 2.
    Valinluck V, Sowers LC. Inflammation-mediated cytosine damage: a mechanistic link between inflammation and the epigenetic alterations in human cancers. Cancer Res. 2007;67(12):5583–6.CrossRefGoogle Scholar
  3. 3.
    Queitsch C, Sangster TA, Lindquist S. Hsp90 as a capacitor of phenotypic variation. Nature. 2002;417(6889):618–24.CrossRefGoogle Scholar
  4. 4.
    Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23(7):781–3.CrossRefGoogle Scholar
  5. 5.
    Issa JP. Age-related epigenetic changes and the immune system. Clin Immunol. 2003;109(1):103–8.CrossRefGoogle Scholar
  6. 6.
    Nielsen HM, Tost J. Epigenetic changes in inflammatory and autoimmune diseases. Subcell Biochem. 2013;61:455–78.CrossRefGoogle Scholar
  7. 7.
    Plasschaert RN, Bartolomei MS. Genomic imprinting in development, growth, behavior and stem cells. Development. 2014;141(9):1805–13.CrossRefGoogle Scholar
  8. 8.
    Johnson IT, Belshaw NJ. Environment, diet and CpG island methylation: epigenetic signals in gastrointestinal neoplasia. Food Chem Toxicol. 2008;46(4):1346–59.CrossRefGoogle Scholar
  9. 9.
    Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429(6990):457–63.CrossRefGoogle Scholar
  10. 10.
    Adcock IM, Tsaprouni L, Bhavsar P, Ito K. Epigenetic regulation of airway inflammation. Curr Opin Immunol. 2007;19(6):694–700.CrossRefGoogle Scholar
  11. 11.
    Trenkmann M, Brock M, Ospelt C, Gay S. Epigenetics in rheumatoid arthritis. Clin Rev Allergy Immunol. 2010;39(1):10–9.CrossRefGoogle Scholar
  12. 12.
    Nimmo ER, Prendergast JG, Aldhous MC, Kennedy NA, Henderson P, Drummond HE, et al. Genome-wide methylation profiling in Crohn’s disease identifies altered epigenetic regulation of key host defense mechanisms including the Th17 pathway. Inflamm Bowel Dis. 2012 May;18(5):889-99.
  13. 13.
    Issa JP. Epigenetic variation and cellular Darwinism. Nat Genet. 2011;43(8):724–6.CrossRefGoogle Scholar
  14. 14.
    Schulze JM, Jackson J, Nakanishi S, Gardner JM, Hentrich T, Haug J, et al. Linking cell cycle to histone modifications: SBF and H2B monoubiquitination machinery and cell-cycle regulation of H3K79 dimethylation. Mol Cell. 2009;35(5):626–41.CrossRefGoogle Scholar
  15. 15.
    Huang Y, Min S, Lui Y, Sun J, Su X, Liu Y, et al. Global mapping of H3K4me3 and H3K27me3 reveals chromatin state-based regulation of human monocyte-derived dendritic cells in different environments. Genes Immun. 2012;13(4):311–20.CrossRefGoogle Scholar
  16. 16.
    He S, Wang J, Kato K, Xie F, Varambally S, Mineishi S, et al. Inhibition of histone methylation arrests ongoing graft-versus-host disease in mice by selectively inducing apoptosis of alloreactive effector T cells. Blood. 2012;119(5):1274–82.CrossRefGoogle Scholar
  17. 17.
    De Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G, Natoli G. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell. 2007;130(6):1083–94.CrossRefGoogle Scholar
  18. 18.
    Zhu Q, Pao GM, Huynh AM, Suh H, Tonnu N, Nederlof PM, et al. BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature. 2011;477(7363):179–84.CrossRefGoogle Scholar
  19. 19.
    Shiio Y, Eisenman RN. Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci U S A. 2003;100(23):13225–30.CrossRefGoogle Scholar
  20. 20.
    Choudhuri S. From Waddington’s epigenetic landscape to small noncoding RNA: some important milestones in the history of epigenetics research. Toxicol Mech Methods. 2011;21(4):252–74.CrossRefGoogle Scholar
  21. 21.
    Mahadevan LC, Willis AC, Barratt MJ. Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell. 1991;65(5):775–83.CrossRefGoogle Scholar
  22. 22.
    Dawson MA, Bannister AJ, Gottgens B, Foster SD, Bartke T, Green AR, et al. JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature. 2009;461(7265):819–22.CrossRefGoogle Scholar
  23. 23.
    Kinane DF, Galicia JC, Gorr SU, Stathopoulou PG, Benakanakere M. P. gingivalis interactions with epithelial cells. Front Biosci. 2008;13:966–84.CrossRefGoogle Scholar
  24. 24.
    Graves DT, Kayal RA. Diabetic complications and dysregulated innate immunity. Front Biosci. 2008;13:1227–39.CrossRefGoogle Scholar
  25. 25.
    Mendenhall EM, Bernstein BE. Chromatin state maps: new technologies, new insights. Curr Opin Genet Dev. 2008;18(2):109–15.CrossRefGoogle Scholar
  26. 26.
    Cortessis VK, Thomas DC, Levine AJ, Breton CV, Mack TM, Siegmund KD, et al. Environmental epigenetics: prospects for studying epigenetic mediation of exposure-response relationships. Hum Genet. 2012;131(10):1565–89.CrossRefGoogle Scholar
  27. 27.
    Alegria-Torres JA, Baccarelli A, Bollati V. Epigenetics and lifestyle. Epigenomics. 2011;3(3):267–77.CrossRefGoogle Scholar
  28. 28.
    Graves DT, Liu R, Oates TW. Diabetes-enhanced inflammation and apoptosis: impact on periodontal pathosis. Periodontol. 2007;45:128–37.CrossRefGoogle Scholar
  29. 29.
    Stathopoulou PG, Galicia JC, Benakanakere MR, Garcia CA, Potempa J, Kinane DF. Porphyromonas gingivalis induce apoptosis in human gingival epithelial cells through a gingipain-dependent mechanism. BMC Microbiol. 2009;9:107.CrossRefGoogle Scholar
  30. 30.
    Lindhe J, Haffajee AD, Socransky SS. Progression of periodontal disease in adult subjects in the absence of periodontal therapy. J Clin Periodontol. 1983;10(4):433–42.CrossRefGoogle Scholar
  31. 31.
    Rosling B, Serino G, Hellstrom MK, Socransky SS, Lindhe J. Longitudinal periodontal tissue alterations during supportive therapy. Findings from subjects with normal and high susceptibility to periodontal disease. J Clin Periodontol. 2001;28(3):241–9.CrossRefGoogle Scholar
  32. 32.
    Gomez RS, Dutra WO, Moreira PR. Epigenetics and periodontal disease: future perspectives. Inflamm Res. 2009;58(10):625–9.CrossRefGoogle Scholar
  33. 33.
    Bayarsaihan D. Epigenetic mechanisms in inflammation. J Dent Res. 2011;90(1):9–17.CrossRefGoogle Scholar
  34. 34.
    • Larsson L. Current concepts of epigenetics and its role in periodontitis. Curr Oral Health Rep. 2017;4(4):286–93 This review article summarizes epigenetics modifications in periodontal disease.CrossRefGoogle Scholar
  35. 35.
    Kinane DF, Shiba H, Hart TC. The genetic basis of periodontitis. Periodontol. 2005;39:91–117.CrossRefGoogle Scholar
  36. 36.
    Barros SP, Offenbacher S. Modifiable risk factors in periodontal disease: epigenetic regulation of gene expression in the inflammatory response. Periodontol. 2014;64(1):95–110.CrossRefGoogle Scholar
  37. 37.
    Zhang S, Barros SP, Moretti AJ, Yu N, Zhou J, Preisser JS, et al. Epigenetic regulation of TNFA expression in periodontal disease. J Periodontol. 2013;84(11):1606–16.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhang S, Barros SP, Niculescu MD, Moretti AJ, Preisser JS, Offenbacher S. Alteration of PTGS2 promoter methylation in chronic periodontitis. J Dent Res. 2010;89(2):133–7.CrossRefGoogle Scholar
  39. 39.
    Kato K, Hara A, Kuno T, Mori H, Yamashita T, Toida M, et al. Aberrant promoter hypermethylation of p16 and MGMT genes in oral squamous cell carcinomas and the surrounding normal mucosa. J Cancer Res Clin Oncol. 2006;132(11):735–43.CrossRefGoogle Scholar
  40. 40.
    Sinha P, Bahadur S, Thakar A, Matta A, Macha M, Ralhan R, et al. Significance of promoter hypermethylation of p16 gene for margin assessment in carcinoma tongue. Head Neck. 2009;31(11):1423–30.CrossRefGoogle Scholar
  41. 41.
    Moreira PR, Guimaraes MM, Guimaraes AL, Diniz MG, Gomes CC, Brito JA, et al. Methylation of P16, P21, P27, RB1 and P53 genes in odontogenic keratocysts. J Oral Pathol Med. 2009;38(1):99–103.CrossRefGoogle Scholar
  42. 42.
    Oliveira NF, Damm GR, Andia DC, Salmon C, Nociti FH Jr, Line SR, et al. DNA methylation status of the IL8 gene promoter in oral cells of smokers and non-smokers with chronic periodontitis. J Clin Periodontol. 2009;36(9):719–25.CrossRefGoogle Scholar
  43. 43.
    Issa JP, Ahuja N, Toyota M, Bronner MP, Brentnall TA. Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res. 2001;61(9):3573–7.PubMedGoogle Scholar
  44. 44.
    Bobetsis YA, Barros SP, Lin DM, Weidman JR, Dolinoy DC, Jirtle RL, et al. Bacterial infection promotes DNA hypermethylation. J Dent Res. 2007;86(2):169–74.CrossRefGoogle Scholar
  45. 45.
    Zhang S, Crivello A, Offenbacher S, Moretti A, Paquette DW, Barros SP. Interferon-gamma promoter hypomethylation and increased expression in chronic periodontitis. J Clin Periodontol. 2010;37(11):953–61.CrossRefGoogle Scholar
  46. 46.
    Hodge DR, Xiao W, Clausen PA, Heidecker G, Szyf M, Farrar WL. Interleukin-6 regulation of the human DNA methyltransferase (HDNMT) gene in human erythroleukemia cells. J Biol Chem. 2001;276(43):39508–11.CrossRefGoogle Scholar
  47. 47.
    Pinho Mde N, Pereira LB, de Souza SL, Palioto DB, Grisi MF, Novaes AB Jr, et al. Short-term effect of COX-2 selective inhibitor as an adjunct for the treatment of periodontal disease: a clinical double-blind study in humans. Braz Dent J. 2008;19(4):323–8.CrossRefGoogle Scholar
  48. 48.
    Zhang S, Barros SP, Niculescu MD, Moretti AJ, Preisser JS, Offenbacher S. Alteration of PTGS2 promoter methylation in chronic periodontitis. J Dent Res. 2009;89(2):133–7.CrossRefGoogle Scholar
  49. 49.
    Loo WT, Jin L, Cheung MN, Wang M, Chow LW. Epigenetic change in E-cadherin and COX-2 to predict chronic periodontitis. J Transl Med. 2010;8:110.CrossRefGoogle Scholar
  50. 50.
    De Oliveira NF, Andia DC, Planello AC, Pasetto S, Marques MR, Nociti FH Jr, et al. TLR2 and TLR4 gene promoter methylation status during chronic periodontitis. J Clin Periodontol. 2011;38(11):975–83.CrossRefGoogle Scholar
  51. 51.
    •• Benakanakere M, Abdolhosseini M, Hosur K, Finoti LS, Kinane DF. TLR2 promoter hypermethylation creates innate immune dysbiosis. J Dent Res. 2015;94(1):183–91 This study shows an important experimental evidence that chrinic infection can induce DNA methylation in human gingival epithelial cells.CrossRefGoogle Scholar
  52. 52.
    Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem. 2001;70:81–120.CrossRefGoogle Scholar
  53. 53.
    Ito K, Barnes PJ, Adcock IM. Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol. 2000;20(18):6891–903.CrossRefGoogle Scholar
  54. 54.
    Cosio BG, Mann B, Ito K, Jazrawi E, Barnes PJ, Chung KF, et al. Histone acetylase and deacetylase activity in alveolar macrophages and blood mononocytes in asthma. Am J Respir Crit Care Med. 2004;170(2):141–7.CrossRefGoogle Scholar
  55. 55.
    Ito K, Caramori G, Lim S, Oates T, Chung KF, Barnes PJ, et al. Expression and activity of histone deacetylases in human asthmatic airways. Am J Respir Crit Care Med. 2002;166(3):392–6.CrossRefGoogle Scholar
  56. 56.
    Barnes PJ, Adcock IM, Ito K. Histone acetylation and deacetylation: importance in inflammatory lung diseases. Eur Respir J. 2005;25(3):552–63.CrossRefGoogle Scholar
  57. 57.
    Cantley MD, Bartold PM, Marino V, Fairlie DP, Le GT, Lucke AJ, et al. Histone deacetylase inhibitors and periodontal bone loss. J Periodontal Res. 2011;46(6):697–703.CrossRefGoogle Scholar
  58. 58.
    Zhou Q, Leeman SE, Amar S. Signaling mechanisms in the restoration of impaired immune function due to diet-induced obesity. Proc Natl Acad Sci U S A. 2011;108(7):2867–72.CrossRefGoogle Scholar
  59. 59.
    Yin L, Chung WO. Epigenetic regulation of human beta-defensin 2 and CC chemokine ligand 20 expression in gingival epithelial cells in response to oral bacteria. Mucosal Immunol. 2011;4(4):409–19.CrossRefGoogle Scholar
  60. 60.
    Imai K, Ochiai K, Okamoto T. Reactivation of latent HIV-1 infection by the periodontopathic bacterium porphyromonas gingivalis involves histone modification. J Immunol. 2009;182(6):3688–95.CrossRefGoogle Scholar
  61. 61.
    de Camargo Pereira G, Guimaraes GN, Planello AC, Santamaria MP, de Souza AP, Line SR, et al. Porphyromonas gingivalis LPS stimulation downregulates DNMT1, DNMT3a, and JMJD3 gene expression levels in human HaCaT keratinocytes. Clin Oral Investig. 2013;17(4):1279–85.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Manjunatha R. Benakanakere
    • 1
    Email author
  • Livia Finoti
    • 1
  • Daniela B. Palioto
    • 1
    • 2
  • Hellen S. Teixeira
    • 3
  • Denis F. Kinane
    • 4
  1. 1.Department of Periodontics, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of OMS and PeriodontologyUniversity of São Paulo - School of Dentistry of RibeirãoPretoBrazil
  3. 3.Department of Orthodontics, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Division of Periodontology, School of Dental MedicineUniversity of Geneva Faculty of MedicineGenevaSwitzerland

Personalised recommendations