Zirconia Implants: Is There a Future?
- 59 Downloads
Abstract
Purpose of Review
This review is making an overview of the behavior of the zirconia-toughened ceramic (ZTC) intended for use in the next generation of dental implants replacing zirconia (yttria-stabilized zirconia [Y-TZP]) currently in use.
Recent Findings
The new ZTCs are joining improved strength and toughness to the excellent biological behavior of TZP currently used worldwide for metal-free dental implants.
Summary
Most of the Y-TZP dental implants currently in use are one-piece designs. New two-piece designs are now in the market. This design results very demanding because of the mechanical behavior of the ceramic and poses some limitations in implant diameter. Thanks to the improved strength and toughness, the new ZTCs will allow the increase in the reliability of the present implant design and the production of implants with diameter smaller than the first generation ones.
Keywords
Dental implants Zirconia Zirconia-toughened ceramics Platelet-reinforced ceramics NanostructureAbbreviations
- ZTA
Zirconia-toughened alumina
- ATZ
Alumina-toughened zirconia
- SHA
Strontium hexaluminate
- TZP
Tetragonal zirconia polycrystal
- ZTC
Zirconia-toughened ceramic
- BIC
Bone-implant contact
- LTD
Low-temperature degradation
Notes
Compliance with Ethical Standards
Conflict of Interest
Corrado Piconi reports consultancy work for Medical Device Division, CeramTec GmbH, Plochingen, Germany. Simone Sprio declares no conflict of interest.
Human and Animal Rights and Informed Consent
This article does not contain any studies with human or animal subjects performed by any of the authors.
References
Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance
- 1.•• Sandhaus S. Materiau pour implants, prothèses et outils. Brevet Inv. N. 1.471.090, P.V.53.006, 1962. This patent is related to the first load-bearing device made out of oxide ceramic worldwide. Google Scholar
- 2.Heimke G, Shulte W. Dental implants having a biocompatible surface. US Patent 4.185.383, 1980.Google Scholar
- 3.Chess JT, Babbush CA. Restoration of lost dentition using aluminum oxide endosteal implants. Dent Clin N Am. 1980;24:521–33.PubMedGoogle Scholar
- 4.Kawahara H, Hirabayashi M, Shikita T. Single crystal alumina for dental implants and bone screws. Biomed Mater Res. 1980;14:597–605.CrossRefGoogle Scholar
- 5.Takahashi T, Sato T, Hisanaga R, Miho O, Suzuki Y, Tsunoda M, et al. Long-term observation of porous sapphire dental implants. Bull Tokyo Dent Coll. 2008;49:23–7.CrossRefPubMedGoogle Scholar
- 6.Branemark PI, Hansson BO, Adell L, Breine U, Lindström J, Hallén O, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Recontr Surg Suppl. 1977;16:1–132.Google Scholar
- 7.•• Miani C, Piconi C, Piselli D, Ponti M. Experimental in vivo studies on zirconia in oral implantology. Italian J Osseoint. 1993;3:23–34. One of the two papers that independently gave the first demonstration of the osseointegration of zirconia. Google Scholar
- 8.•• Akagawa Y, Ichikawa Y, Nikai H, Tsuru H. Interface histology of unloaded and early loaded partially stabilized zirconia endosseous implant in initial bone healing. J Prosthet Dent. 1993;69:599–604. One of the two papers that independently gave the first demonstration of the osseointegration of zirconia. CrossRefPubMedGoogle Scholar
- 9.Piconi C, Rimondini L, Cerroni L. La zirconia in odontoiatria. Milano: Masson Elsevier Publ; 2008.Google Scholar
- 10.Barwacz CA, Stanford CM, Diehl UA, Qian F, Cooper LF, Feine J, et al. Electronic assessment of peri-implant mucosal esthetics around three implant-abutment configurations: a randomized clinical trial. Clin Oral Impl Res. 2016;27:707–15.CrossRefGoogle Scholar
- 11.Scarano A, Piattelli M, Caputi S, Favero GA, Piattelli A. Bacterial adhesion on commercially titanium and zirconium oxide disks: an in vivo human study. J Periodontol. 2004;75:292–6.CrossRefPubMedGoogle Scholar
- 12.Rimondini L, Cerroni L, Carrassi A, Torricelli P. Bacterial colonization of zirconia ceramic surfaces: an in vitro and in vivo study. Int J Oral Maxillofac Implants. 2002;17:793–8.PubMedGoogle Scholar
- 13.Piconi C, Ionescu A, Cochis A, Iasi E, Brambilla E, Rimondini L. Bioceramics materials show reduced pathological biofilm formation. Key Eng Mater. 2015;631:448–53.CrossRefGoogle Scholar
- 14.Depprich R, Zipprich H, Ommerborn M, Naujoks C, Handschel J, Wiesmann HP, et al. Osseointegration of zirconia implants compared with titanium: an in vivo study. Head Face Med. 2008;4:30.CrossRefPubMedPubMedCentralGoogle Scholar
- 15.Syed M. Allergic reactions to dental materials—a systematic review. J Clin Diagn Res. 2015;9:ZE04–9.PubMedPubMedCentralGoogle Scholar
- 16.Addison O, Davenport AJ, Newport RJ, Kalra S, Monir M, Mosselmans JF, et al. Do ‘passive’ medical titanium surfaces deteriorate in service in the absence of wear? J R Soc Interface. 2012;9:3161–4.CrossRefPubMedPubMedCentralGoogle Scholar
- 17.Olmedo DG, Tasat DR, Duffó G, Guglielmotti MB, Cabrini RL. The issue of corrosion in dental implants: a review. Acta Odontol Latinoam. 2009;22:3–9.PubMedGoogle Scholar
- 18.Sicilia A, Cuesta S, Coma G, Arregui I, Guisasola C, Ruiz E, et al. Titanium allergy in dental implant patients: a clinical study on 1500 consecutive patients. Clin Oral Implants Res. 2008;19:823–35.CrossRefPubMedGoogle Scholar
- 19.Siddiqi A, Payne AG, De Silva RK, Duncan WJ. Titanium allergy: could it affect dental implant integration? Clin Oral Implants Res. 2011;22:673–80.CrossRefPubMedGoogle Scholar
- 20.Fretwurst T, Nelson K, Tarnow DP, Wang H-L, Giannobile WV. Is metal particle release associated with peri-implant bone destruction? An emerging concept. J Dent Res. 2018;97:259–65.CrossRefPubMedGoogle Scholar
- 21.Safioti LM, Kotsakis GA, Pozhitkov AE, Chung WO, Daubert DM. Increased levels of dissolved titanium are associated with peri-implantitis—a cross-sectional study. J Periodontol. 2017;88:436–42.CrossRefPubMedGoogle Scholar
- 22.Lughi V, Sergo V. Low temperature degradation -aging- of zirconia: a critical review of the relevant aspects in dentistry. Dent Mater. 2010;26:807–20.CrossRefPubMedGoogle Scholar
- 23.•• Garvie RC, Hannink RHJ, Pascoe RT. Ceramic steel? Nature. 1975;258:703–4. A landmark in the development of advanced ceramic materials. CrossRefGoogle Scholar
- 24.• Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999;20:1–25. The most cited reference on this topic. CrossRefPubMedGoogle Scholar
- 25.• Piconi C, Condò SG, Kosmac T. Alumina- and zirconia-based ceramics for load bearing applications. In: Shen JZ, Kosmac T, editors. Advanced ceramics for dentistry. Waltham: Butterworth-Heinemann; 2014. Comprehensive review of zirconia ceramics for dental applications. Google Scholar
- 26.ISO 13356. Implants for surgery—ceramic materials based on yttria-stabilized tetragonal zirconia (Y-TZP). Geneva: International Standards Organization; 2008.Google Scholar
- 27.Özcan M, Volpato CA, Fredel MC. Artificial aging of zirconium dioxide: an evaluation of current knowledge and clinical relevance. Curr Oral Health Rep. 2016;3:193–7.CrossRefGoogle Scholar
- 28.Sanon C, Chevalier J, Douillard T, Kohal RJ, Coelho PG, Hjerppe J, et al. Low temperature degradation and reliability of one-piece ceramic oral implants with a porous surface. Dent Mater. 2013;29:389–97.CrossRefPubMedGoogle Scholar
- 29.Monzavi M, Noumbissi S, Nowzari H. The impact of in vitro accelerated aging, approximating 30 and 60 years in vivo, on commercially available zirconia dental implants. Clin Implant Dent Relat Res. 2017;19:245–52.CrossRefPubMedGoogle Scholar
- 30.Ross IM, Rainforth WM, McComb DW, Scott AJ, Brydson R. The role of trace addition of alumina to yttria-tetragonal zirconia polycrystals (Y-TZP). Scripta Mater. 2001;45:653–60.CrossRefGoogle Scholar
- 31.Lawson S. Environmental degradation of zirconia ceramics. J Eur Ceram Soc. 1995;15:485–502.CrossRefGoogle Scholar
- 32.Piconi C, Burger W, Richter HG, Vatteroni R, Cittadini A, Boccalari M. New Y-TZP powders for biomedical applications. J Mater Sci Mater Med. 1997;8:113–8.CrossRefPubMedGoogle Scholar
- 33.Matsui K, Yoshida H, Ikuhara Y. Nanocrystalline, ultra-degradation-resistant zirconia: its grain boundary nanostructure and nanochemistry. Sci Rep. 2014;4:4758.CrossRefPubMedPubMedCentralGoogle Scholar
- 34.Zhang F, Vanmeensel K, Inokoshi M, Batuk M, Hadermann J, Van Meerbeek B, et al. Critical influence of alumina content on the low temperature degradation of 2–3 mol% yttria-stabilized TZP for dental restorations. J Eur Ceram Soc. 2015;35:741–50.CrossRefGoogle Scholar
- 35.Zhang F, Batuk M, Hadermann J, Manfredi G, Mariën A, Vanmeensel K, et al. Effect of cation dopant radius on the hydrothermal stability of tetragonal zirconia: grain boundary segregation and oxygen vacancy annihilation. Acta Mater. 2016;106:48–58.CrossRefGoogle Scholar
- 36.Piconi C, Maccauro G, Angeloni M, Rossi B, Learmonth ID. Zirconia heads in perspective: a survey of zirconia outcomes in total hip replacement. Hip Intl. 2007;17:119–30.CrossRefGoogle Scholar
- 37.Gahlert M, Burtscher D, Grunert I, Kniha H, Steinhauser E. Failure analysis of fractured dental zirconia implants. Clin Oral Implants Res. 2012;23:287–93.CrossRefPubMedGoogle Scholar
- 38.Osman RB, Swain MV, Atieh M, Ma S, Duncan W. Ceramic implants (Y-TZP): are they a viable alternative to titanium implants for the support of verdentures? A randomized clinical trial. Clin Oral Implants Res. 2014;25:1366–77.CrossRefPubMedGoogle Scholar
- 39.Stoichkov B, Kirov D. Analysis of the causes of dental implant fracture: a retrospective clinical study. Quintessence Int. 2018;12:1–8.Google Scholar
- 40.Adolfsson E, Shen JZ. Defect minimization in prosthetic ceramics. In: Shen JZ, Kosmac T, editors. Advanced ceramics for dentistry. Waltham: Butterworth-Heinemann; 2014.Google Scholar
- 41.Gutknecht D, Chevalier J, Garnier V, Fantozzi G. Key role of processing to avoid low temperature ageing in alumina zirconia composites for orthopaedic application. J Eur Ceram Soc. 2007;27:1547–52.CrossRefGoogle Scholar
- 42.Shimada MTK. Thermal stability of Y2O3-partiallystabilized (Y-PSZ) and Y-PSZ/Al2O3 composites. J Mater Sci Lett. 1985;4:857–61.CrossRefGoogle Scholar
- 43.Fabbri P, Piconi C, Burresi E, Magnani G, Mazzanti F, Mingazzini C. Lifetime estimation of a zirconia-alumina composite for biomedical applications. Dent Mater. 2014;30:138–42.CrossRefPubMedGoogle Scholar
- 44.Tsukuma K. Mechanical properties and thermal stability of CeO2 containing tetragonal zirconia polycrystals. Am Ceram Soc Bull. 1986;65:1386–9.Google Scholar
- 45.Tsukuma K, Shimada M. Strength, fracture toughness and Vickers hardness of CeO2-stabilized tetragonal zirconia polycrystals (Ce-TZP). J Mater Sci. 1985;20:1178–84.CrossRefGoogle Scholar
- 46.Schmid HK, Pennefather R, Meriani S, Schmid C. Redistribution of Ce and La during processing of Ce(La)-TZP/Al2O3 composites. J Eur Ceram Soc. 1992;72:761–4.Google Scholar
- 47.Cutler RA, Lindemann JM, Ulvensøen JH, Lange HI. Damage-resistant SrO doped Ce-TZP/Al2O3 composites. Mater Des. 1994;15:123–33.CrossRefGoogle Scholar
- 48.Maschio S, Pezzotti G, Sbaizero O. Effect of LaNbO4 addition on the mechanical properties of ceria-tetragonal zirconia polycrystal matrices. J Eur Ceram Soc. 1998;18:1779–85.CrossRefGoogle Scholar
- 49.Magnani G, Brillante A. Effect of the composition and sintering process on mechanical properties and residual stresses in zirconia–alumina composites. J Eur Ceram Soc. 2005;25:3383–92.CrossRefGoogle Scholar
- 50.Benzaid R, Chevalier J, Saâdaoui M, Fantozzi G, Nawa M, Diaz LA, et al. Fracture toughness, strength and slow crack growth in a ceria stabilized zirconia–alumina nanocomposite for medical applications. Biomaterials. 2008;29:3636–41.CrossRefPubMedGoogle Scholar
- 51.Kern F. A comparison of microstructure and mechanical properties of 12Ce-TZP reinforced with alumina and in situ formed strontium- or lanthanum hexaaluminate precipitates. J Eur Ceram Soc. 2014;34:413–23.CrossRefGoogle Scholar
- 52.Palmero P, Fornabaio M, Montanaro L, Reveron H, Esnouf C, Chevalier J. Towards long lasting zirconia-based composites for dental implants. Part I: innovative synthesis, microstructural characterization and in vitro stability. Biomaterials. 2015;50:38–46.CrossRefPubMedGoogle Scholar
- 53.Nawa M, Nakamoto S, Sekino T, Niihara K. Tough and strong Ce-TZP/alumina nanocomposite doped with titania. Ceram Int. 1998;24:497–506.CrossRefGoogle Scholar
- 54.Ban S, Sato H, Suehiro Y, Nakanishi H, Masahiro Nawa M. Biaxial flexure strength and low temperature degradation of Ce-TZP/Al2O3 nanocomposite and Y-TZP as dental restoratives. J Biomed Mater Res Part B: Appl Biomater. 2008;87B:492–8.CrossRefGoogle Scholar
- 55.Oshima Y, Iwasa F, Tachi K, Baba K. Effect of nanofeatured topography on ceria-stabilized zirconia/alumina nanocomposite on osteogenesis and osseointegration. Int J Oral Maxillofac Implants. 2017;32:81–91.CrossRefPubMedGoogle Scholar
- 56.Kim DG, Kwon HJ, Jeong YH, Kosel E, Lee DJ, Han JS, et al. Mechanical properties of bone tissues surrounding dental implant systems with different treatments and healing periods. Clin Oral Investig. 2016;20:2211–20.CrossRefPubMedGoogle Scholar
- 57.Han JM, Hong G, Lin H, Shimizu Y, Wu Y, Zheng G, et al. Biomechanical and histological evaluation of the osseointegration capacity of two types of zirconia implant. Int J Nanomedicine. 2016;11:6507–16.CrossRefPubMedPubMedCentralGoogle Scholar
- 58.Igarashi K, Nakahara K, Haga-Tsujimura M, Kobayashi E, Watanabe F. Hard and soft tissue responses to three different implant materials in a dog model. Dent Mater. 2015;34:692–701.CrossRefGoogle Scholar
- 59.Rieger W, Leyen S, Weber W. The use of bioceramics in dental and medical applications. Digital Dental News. 2009;3:6–13.Google Scholar
- 60.Spies BC, Balmer M, Patzelt SBM, Vach K, Kohal R-J. Clinical and patient-reported outcomes of a zirconia oral implant: three-year results of a prospective cohort investigation. J Dental Res. 2015;94:1385–91.CrossRefGoogle Scholar
- 61.Jank S, Hochgattener G. Succes rate of two piece zirconia implants: a retrospective statistical analysis. Implant Dent. 2016;25:193–8.CrossRefPubMedGoogle Scholar
- 62.Maccauro G, Bianchino G, Sangiorgi S, Magnani G, Marotta D, Manicone PF, et al. Development of a new zirconia-toughened alumina: promising mechanical properties and absence of in vitro carcinogenicity. Int J Immunopathol Pharmacol. 2009;22:773–9.CrossRefPubMedGoogle Scholar
- 63.Maccauro G, Cittadini A, Magnani G, Sangiorgi S, Muratori F, Manicone PF, et al. In vivo characterization of zirconia toughened alumina material: a comparative animal study. Int J Immunopathol Pharmacol. 2010;23:841–6.CrossRefPubMedGoogle Scholar
- 64.Schierano G, Mussano F, Faga MG, Menicucci G, Manzella C, Sabione C, et al. An alumina toughened zirconia composite for dental implant application: in vivo animal results. Biomed Res Int. 2015:157360.Google Scholar
- 65.Faga MG, Vallée A, Bellosi A, Mazzocchi M, Thinh NN, Martra G, et al. Chemical treatment on alumina–zirconia composites inducing apatite formation with maintained mechanical properties. J Eur Ceram Soc. 2012;32:2113–20.CrossRefGoogle Scholar
- 66.Apel E, Ritzberger C, Courtois N, Reveron H, Chevalier J, Schweiger M, et al. Introduction to a tough, strong and stable Ce-TZP/MgAl2O4 composite for biomedical applications. J Eur Ceram Soc. 2012;32:2697–703.CrossRefGoogle Scholar
- 67.ISO 6872. Dentistry-ceramic materials. Geneva: International Standards Organization; 2015.Google Scholar
- 68.•• Touaiher I, Saâdaouia M, Chevalier J, Helen Reveron H. Effect of loading configuration on strength values in a highly transformable zirconia-based composite. Dental Mater. 2016;32:e211–9. This paper demonstrates the need to create a new standard for the measure of the mechanical strength of toughened dental ceramics. CrossRefGoogle Scholar
- 69.Miura M, Hongoh H, Yogo T, Hirano S. Formation of plate-like lanthanum-β-aluminate crystal in Ce-TZP matrix. J Mater Sci. 1994;29:262–8.CrossRefGoogle Scholar
- 70.• Burger W. Umwadlungs- und plateletverstaerkte Aluminiumoxidmatrixwerkstoffe (teil 1). Keram Z. 1997;49:1067–70. Seminal work for platelet-reinforced materials. Google Scholar
- 71.• Burger W. Umwadlungs- und plateletverstaerkte Aluminiumoxidmatrixwerkstoffe (teil 2). Keram Z. 1998;50:18–22. Seminal work for platelet-reinforced materials. Google Scholar
- 72.Burger W. Oxidkeramik wieder im Trend - neue Werkstoffe für die Medizintechnik und industrielle Anwendungen. Keram Z. 2012;2:134–7.Google Scholar
- 73.Palmero P, Naglieri V, Chevalier J, Fantozzi G, Montanaro L. Alumina-based nanocomposites obtained by doping with inorganic salt solutions: application to immiscible and reactive systems. J Eur Ceram Soc. 2009;29:59–66.CrossRefGoogle Scholar
- 74.Fornabaio M, Reveron H, Adolfsson E, Montanaro L, Chevalier J, Palmero P. Design and development of dental ceramics: examples of current innovations and future concepts. In: Palmero P, Cambier F, De Barra E, editors. Advances in ceramic biomaterials. Duxford: Woodhead Publ; 2017.Google Scholar
- 75.Reveron H, Fornabaio M, Palmero P, Fürderer T, Adolfsson E, Lughi V, et al. Towards long lasting zirconia-based composites for dental implants: transformation induced plasticity and its consequence on ceramic reliability. Acta Biomater. 2017;48:423–32.CrossRefPubMedGoogle Scholar
- 76.Altmann B, Karygianni L, Al-Ahmad A, Butz F, Bächle M, Adolfsson E, et al. Assessment of novel long-lasting ceria-stabilized zirconia-based ceramics with different surface topographies as implant materials. Adv Funct Mater. 2017;27:1702512.CrossRefGoogle Scholar
- 77.Gottwik L, Wippermann A, Kuntz M, Denkena B. Effect of strontium hexaluminate on the damage tolerance of yttria-stabilized zirconia. Ceram Int. 2017;43:15891–8.CrossRefGoogle Scholar
- 78.Denkena B, Wippermann A, Busemann S, Kuntz M, Gottwik L. Comparison of residual strength behavior after indentation, scratching and grinding of zirconia-based ceramics for medical-technical applications. J Eur Ceram Soc. 2018;38:1760–8.CrossRefGoogle Scholar