Current Oral Health Reports

, Volume 5, Issue 3, pp 178–185 | Cite as

Recent Trends in Tricalcium Silicates for Vital Pulp Therapy

  • Imad AboutEmail author
Dental Restorative Materials (M Özcan, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Dental Restorative Materials


Purpose of Review

Tricalcium silicates are considered as materials of choice for vital pulp therapy. Recent development improved their mechanical and bioactive properties and broadened their clinical application fields. Incorporating resins to tricalcium silicates further decreased the setting time and simplified clinical procedures but raised questions about their potential toxicity.

Recent Findings

Tricalcium silicates represent an added value in vital pulp therapy. This is ascribed to the pulp high regeneration potential, material byproducts production upon hydration and growth factor release from target cells. Adding resins to tricalcium silicates decreases their hydration and subsequently leads to pulp toxicity.


Tricalcium silicates can be successfully used for vital pulp therapy in a broad range of clinical applications. Although long-term clinical studies are still required with these new materials, adding resins to tricalcium silicates is responsible for pulp disorganization and toxicity and cannot be recommended for direct pulp capping.


Light-cured tricalcium silicates Direct pulp capping Hydration byproducts Pulp regeneration 


Compliance with Ethical Standards

Conflict of Interest

Dr. About reports grants from Septodont.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    •• Bakhtiar H, Nekoofar MH, Aminishakib P, Abedi F, Naghi Moosavi F, Esnaashari E, et al. Human pulp responses to partial pulpotomy treatment with TheraCal as compared with Biodentine and ProRoot MTA: a clinical trial. J Endod. 2017;43:1786–91.CrossRefPubMedGoogle Scholar
  2. 2.
    Linu S, Lekshmi MS, Varunkumar VS, Sam Joseph VG. Treatment outcome following direct pulp capping using bioceramic materials in mature permanent teeth with carious exposure: a pilot retrospective study. J Endod. 2017;43:1635–9.CrossRefPubMedGoogle Scholar
  3. 3.
    •• About I. Biodentine: from biochemical and bioactive properties to clinical applications. Giornale Italiano di Endodonzia. 2016;30:81–8.CrossRefGoogle Scholar
  4. 4.
    Torabinejad M, Rastegar AF, Kettering JD, Pitt Ford DR. Bacterial leakage of mineral trioxide aggregate as root-end filling material. J Endod. 1995;21:109–12.CrossRefPubMedGoogle Scholar
  5. 5.
    Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review—part III: clinical applications, drawbacks, and mechanism of action. J Endod. 2010;36:400–13.CrossRefPubMedGoogle Scholar
  6. 6.
    Nowicka A, Lipski M, Parafiniuk M, Sporniak-Tutak K, Lichota D, Kosierkiewicz A, et al. Response of human dental pulp capped with Biodentine and mineral trioxide aggregate. J Endod. 2013;39:743–7.CrossRefPubMedGoogle Scholar
  7. 7.
    • Nowicka A, Wilk G, Lipski M, Kołecki J, Buczkowska-Radlińska J. Tomographic evaluation of reparative dentin formation after direct pulp capping with Ca(OH)2, MTA, Biodentine, and dentin bonding system in human teeth. J Endod. 2015;41:1234–40.CrossRefPubMedGoogle Scholar
  8. 8.
    Vallés M, Mercadé M, Duran-Sindreu F, Bourdelande JL, Roig M. Influence of light and oxygen on the color stability of five calcium silicate-based materials. J Endod. 2013;39:525–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Chang SW, Bae WJ, Yi JK, Lee S, Lee DW, Kum KY, et al. Odontoblastic differentiation, inflammatory response, and angiogenic potential of 4 calcium silicate-based cements: micromega MTA, ProRoot MTA, RetroMTA, and experimental calcium silicate cement. J Endod. 2015;41:1524–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Kum KY, Kim EC, Yoo YJ, Zhu Q, Safavi K, Bae KS, et al. Trace metal contents of three tricalcium silicate materials: MTA Angelus, Micro Mega MTA and Bioaggregate. Int Endod J. 2014;47:704–10.CrossRefPubMedGoogle Scholar
  11. 11.
    Laurent P, Camps J, De Méo M, Dejou J, About I. Induction of specific cell responses to a Ca(3)SiO(5)-based posterior restorative material. Dent Mater. 2008;24:1486–94.CrossRefPubMedGoogle Scholar
  12. 12.
    Atmeh AR, Chong EZ, Richard G, Festy F, Watson TF. Dentin-cement interfacial interaction: calcium silicates and polyalkenoates. J Dent Res. 2012;91:454–9.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Raskin A, Eschrich G, Dejou J, About I. In vitro microleakage of Biodentine as a dentin substitute compared to Fuji II LC in cervical lining restorations. J Adhes Dent. 2012;14:535–42.PubMedGoogle Scholar
  14. 14.
    Pedano MS, Li X, Li S, Sun Z, Cokic SM, Putzeys E, et al. Freshly-mixed and setting calcium-silicate cements stimulate human dental pulp cells. Dent Mater. 2018;34:797–808.CrossRefPubMedGoogle Scholar
  15. 15.
    Araújo LB, Cosme-Silva L, Fernandes AP, Oliveira TM, Cavalcanti BDN, Gomes Filho JE, et al. Effects of mineral trioxide aggregate, BiodentineTM and calcium hydroxide on viability, proliferation, migration and differentiation of stem cells from human exfoliated deciduous teeth. J Appl Oral Sci. 2018 Feb 1;26:e20160629. Scholar
  16. 16.
    El Karim IA, McCrudden MT, McGahon MK, Curtis TM, Jeanneau C, Giraud T, et al. Biodentine reduces tumor necrosis factor alpha-induced TRPA1 expression in odontoblastlike cells. J Endod. 2016;42:589–95.CrossRefPubMedGoogle Scholar
  17. 17.
    Koubi G, Colon P, Franquin JC, Hartmann A, Richard G, Faure MO, et al. Clinical evaluation of the performance and safety of a new dentine substitute, Biodentine, in the restoration of posterior teeth—a prospective study. Clin Oral Investig. 2013;17:243–9.CrossRefPubMedGoogle Scholar
  18. 18.
    • Katge FA, Patil DP. Comparative analysis of 2 calcium silicate-based cements (Biodentine and mineral trioxide aggregate) as direct pulp-capping agent in young permanent molars: a split mouth study. J Endod. 2017;43:507–13.CrossRefPubMedGoogle Scholar
  19. 19.
    Karypidou A, Chatzinikolaou ID, Kouros P, Koulaouzidou E, Economides N. Management of bilateral invasive cervical resorption lesions in maxillary incisors using a novel calcium silicate-based cement: a case report. Quintessence Int. 2016;47:637–42.PubMedGoogle Scholar
  20. 20.
    Baranwal AK. Management of external invasive cervical resorption of tooth with Biodentine: a case report. J Conserv Dent. 2016;19:296–9.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Salzano S, Tirone F. Conservative nonsurgical treatment of class 4 invasive cervical resorption: a case series. J Endod. 2015;41:1907–12.CrossRefPubMedGoogle Scholar
  22. 22.
    Hashem D, Mannocci F, Patel S, Manoharan A, Brown JE, Watson TF, et al. Clinical and radiographic assessment of the efficacy of calcium silicate indirect pulp capping: a randomized controlled clinical trial. J Dent Res. 2015;94:562–8.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Brizuela C, Ormeño A, Cabrera C, Cabezas R, Silva CI, Ramírez V, et al. Direct pulp capping with calcium hydroxide, mineral trioxide aggregate, and Biodentine in permanent young teeth with caries: a randomized clinical trial. J Endod. 2017;43:1776–80.CrossRefPubMedGoogle Scholar
  24. 24.
    Cuadros-Fernández C, Lorente Rodríguez AI, Sáez-Martínez S, García-Binimelis J, About I, Mercadé M. Short-term treatment outcome of pulpotomies in primary molars using mineral trioxide aggregate and Biodentine: a randomized clinical trial. Clin Oral Investig. 2016;20:1639–45.CrossRefPubMedGoogle Scholar
  25. 25.
    Niranjani K, Prasad MG, Vasa AA, Divya G, Thakur MS, Saujanya K. Clinical evaluation of success of primary teeth pulpotomy using mineral trioxide aggregate(®), laser and Biodentine(TM)—an in vivo study. J Clin Diagn Res. 2015;9:ZC35–7.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Kusum B, Rakesh K, Richa K. Clinical and radiographical evaluation of mineral trioxide aggregate, Biodentine and propolis as pulpotomy medicaments in primary teeth. Restor Dent Endod. 2015;40:276–85.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    El Meligy OA, Allazzam S, Alamoudi NM. Comparison between Biodentine and formocresol for pulpotomy of primary teeth: a randomized clinical trial. Quintessence Int. 2016;47:571–80.PubMedGoogle Scholar
  28. 28.
    Rajasekharan S, Martens L, Vandenbulcke J, Jacquet W, Bottenberg P, Cauwels R. Efficacy of three different pulpotomy agents in primary molars—a randomized control trial. Int Endod J. 2017;50:215–28.CrossRefPubMedGoogle Scholar
  29. 29.
    Taha NA, Abdelkhader SZ. Outcome of full pulpotomy using Biodentine in adult patients with symptoms indicative of irreversible pulpitis. Int Endod J. 2018.
  30. 30.
    Borkar SA, Ataide I. Biodentine pulpotomy several days after pulp exposure: four case reports. J Conserv Dent. 2015;18:73–8.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sinkar RC, Patil SS, Jogad NP, Gade VJ. Comparison of sealing ability of ProRoot MTA, RetroMTA, and Biodentine as furcation repair materials: an ultraviolet spectrophotometric analysis. J Conserv Dent. 2015;18:445–8.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Silva LAB, Pieroni KAMG, Nelson-Filho P, Silva RAB, Hernandéz-Gatón P, Lucisano MP, et al. Furcation perforation: periradicular tissue response to Biodentine as a repair material by histopathologic and indirect immunofluorescence analyses. J Endod. 2017;43:1137–42.CrossRefPubMedGoogle Scholar
  33. 33.
    Pruthi PJ, Dharmani U, Roongta R, Talwar S. Management of external perforating root resorption by intentional replantation followed by Biodentine restoration. Dent Res J. 2015;12:488–93.CrossRefGoogle Scholar
  34. 34.
    Umashetty G, Hoshing U, Patil S, Ajgaonkar N. Management of inflammatory internal root resorption with Biodentine and thermoplasticised gutta-percha. Case Rep Dent. 2015;2015:452609.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Khoshkhounejad M, Shokouhinejad N, Pirmoazen S. Regenerative endodontic treatment: report of two cases with different clinical management and outcomes. J Dent. 2015;12:460–8.Google Scholar
  36. 36.
    Martens L, Rajasekharan S, Cauwels R. Pulp management after traumatic injuries with a tricalcium silicate-based cement (Biodentine™): a report of two cases, up to 48 months follow-up. Eur Arch Paediatr Dent. 2015;16:491–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Martens L, Rajasekharan S, Cauwels R. Endodontic treatment of trauma-induced necrotic immature teeth using a tricalcium silicate-based bioactive cement. A report of 3 cases with 24-month follow-up. Eur J Paediatr Dent. 2016;17:24–8.PubMedGoogle Scholar
  38. 38.
    Nayak G, Hasan MF. Biodentine—a novel dentinal substitute for single visit apexification. Restor Dent Endod. 2014;39:120–5.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Evren OK, Altunsoy M, Tanriver M, Capar ID, Kalkan A, Gok T. Fracture resistance of simulated immature teeth after apexification with calcium silicate-based materials. Eur J Dent. 2016;10:188–92.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Vidal K, Martin G, Lozano O, Salas M, Trigueros J, Aguilar G. Apical closure in apexification: a review and case report of apexification treatment of an immature permanent tooth with Biodentine. J Endod. 2016;42:730–4.CrossRefPubMedGoogle Scholar
  41. 41.
    Caron G, Azérad J, Faure MO, Machtou P, Boucher Y. Use of a new retrograde filling material (Biodentine) for endodontic surgery: two case reports. Int J Oral Sci. 2014;6:250–3.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gupta PK, Garg G, Kalita C, Saikia A, Srinivasa TS, Satish G. Evaluation of sealing ability of Biodentine as retrograde filling material by using two different manipulation methods: an in vitro study. J Int Oral Health. 2015;7:111–4.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Vallés M, Roig M, Duran-Sindreu F, Martínez S, Mercadé M. Color stability of teeth restored with Biodentine: a 6-month in vitro study. J Endod. 2015;41:1157–60.CrossRefPubMedGoogle Scholar
  44. 44.
    • Camilleri J, Laurent P, About I. Hydration of Biodentine, Theracal LC, and a prototype tricalcium silicate-based dentin replacement material after pulp capping in entire tooth cultures. J Endod. 2014;40:1846–54.CrossRefPubMedGoogle Scholar
  45. 45.
    Laurent P, Camps J, About I. Biodentine(TM) induces TGF-β1 release from human pulp cells and early dental pulp mineralization. Int Endod J. 2012;45:439–48.CrossRefPubMedGoogle Scholar
  46. 46.
    Mathieu S, Jeanneau C, Sheibat-Othman N, Kalaji N, Fessi H, About I. Usefulness of controlled release of growth factors in investigating the early events of dentin-pulp regeneration. J Endod. 2013;39:228–35.CrossRefPubMedGoogle Scholar
  47. 47.
    Hebling J, Lessa FC, Nogueira I, Carvalho RM, Costa CA. Cytotoxicity of resin-based light-cured liners. Am J Dent. 2009;22:137–42.PubMedGoogle Scholar
  48. 48.
    •• Jeanneau C, Laurent P, Rombouts C, Giraud T, About I. Light-cured tricalcium silicate toxicity to the dental pulp. J Endod. 2017;43:2074–80.CrossRefPubMedGoogle Scholar
  49. 49.
    Bjerre L, Bünger CE, Kassem M, Mygind T. Flow perfusion culture of human mesenchymal stem cells on silicate-substituted tricalcium phosphate scaffolds. Biomaterials. 2008;29:2616–27.CrossRefPubMedGoogle Scholar
  50. 50.
    Bielby RC, Christodoulou IS, Pryce RS, Radford WJ, Hench LL, Polak JM. Time and concentration-dependent effects of dissolution products of 58S sol–gel bioactive glass on proliferation and differentiation of murine and human osteoblasts. Tissue Eng. 2004;10:1018–26.CrossRefPubMedGoogle Scholar
  51. 51.
    Zhang XR, Hu XQ, Jia XL, Yang LK, Meng QY, Shi YY, et al. Cell studies of hybridized carbon nanofibers containing bioactive glass nanoparticles using bone mesenchymal stromal cells. Sci Rep. 2016;6:38685.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Bhavana V, Chaitanya KP, Gandi P, Patil J, Dola B, Reddy RB. Evaluation of antibacterial and antifungal activity of new calcium-based cement (Biodentine) compared to MTA and glass ionomer cement. J Conserv Dent. 2015;18:44–6.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    An S, Gao Y, Ling J, Wei X, Xiao Y. Calcium ions promote osteogenic differentiation and mineralization of human dental pulp cells: implications for pulp capping materials. J Mater Sci Mater Med. 2012;23:789–95.CrossRefPubMedGoogle Scholar
  54. 54.
    Zanini M, Sautier JM, Berdal A, Simon S. Biodentine induces immortalized murine pulp cell differentiation into odontoblast-like cells and stimulates biomineralization. J Endod. 2012;38:1220–6.CrossRefPubMedGoogle Scholar
  55. 55.
    Shayegan A, Jurysta C, Atash R, Petein M, Abbeele AV. Biodentine used as a pulp-capping agent in primary pig teeth. Pediatr Dent. 2012;34:e202–8.PubMedGoogle Scholar
  56. 56.
    Tran XV, Gorin C, Willig C, Baroukh B, Pellat B, Decup F, et al. Effect of a calcium-silicate based restorative cement on pulp repair. J Dent Res. 2012;91:1166–71.CrossRefPubMedGoogle Scholar
  57. 57.
    Tziafa C, Koliniotou-Koumpia E, Papadimitriou S, Tziafas D. Dentinogenic responses after direct pulp capping of miniature swine teeth with Biodentine. J Endod. 2014;40:1967–71.CrossRefPubMedGoogle Scholar
  58. 58.
    Rombouts C, Giraud T, Jeanneau, About I. Pulp vascularization during tooth development, regeneration, and therapy. J Dent Res. 2017;96:137–44.CrossRefPubMedGoogle Scholar
  59. 59.
    • Chmilewsky F, Jeanneau C, Laurent P, About I. Pulp fibroblasts synthesize functional complement proteins involved in initiating dentin-pulp regeneration. Am J Pathol. 2014;184:1991–2000.CrossRefPubMedGoogle Scholar
  60. 60.
    Rufas P, Jeanneau C, Rombouts C, Laurent P, About I. Complement C3a mobilizes dental pulp stem cells and specifically guides pulp fibroblast recruitment. J Endod. 2016;42:1377–84.CrossRefPubMedGoogle Scholar
  61. 61.
    Chmilewsky F, Jeanneau C, Laurent P, Kirschfink M, About I. Pulp progenitor cell recruitment is selectively guided by a C5a gradient. J Dent Res. 2013;92:532–9.CrossRefPubMedGoogle Scholar
  62. 62.
    Chmilewsky F, Ayaz W, Appiah J, About I, Chung SH. Nerve growth factor secretion from pulp fibroblasts is modulated by complement C5a receptor and implied in neurite outgrowth. Sci Rep. 2016;6:31799.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Farges JC, Alliot-Licht B, Baudouin C, Msika P, Bleicher F, Carrouel F. Odontoblast control of dental pulp inflammation triggered by cariogenic bacteria. Front Physiol. 2013;4:326.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Farges JC, Bellanger A, Ducret M, Aubert-Foucher E, Richard B, Alliot-Licht B, et al. Human odontoblast-like cells produce nitric oxide with antibacterial activity upon TLR2 activation. Front Physiol. 2015;6:185.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    • Jeanneau C, Rufas P, Rombouts C, Giraud T, Dejou J, About I. Can pulp fibroblasts kill cariogenic bacteria? Role of complement activation. J Dent Res. 2015;94:1765–72.CrossRefPubMedGoogle Scholar
  66. 66.
    About I. Dentin-pulp regeneration: the primordial role of the microenvironment and its modification by traumatic injuries and bioactive materials. Endod Top. 2013;28:61–89.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Aix Marseille Univ, CNRS, ISMMarseilleFrance

Personalised recommendations