Advertisement

Current Oral Health Reports

, Volume 5, Issue 3, pp 163–168 | Cite as

Fracture Toughness Testing of Dental Restoratives: a Critical Evaluation

  • Renan Belli
  • José Ignácio Zorzin
  • Ulrich Lohbauer
Dental Restorative Materials (M Özcan, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Dental Restorative Materials

Abstract

Purpose of Review

We intend by this short critical review to highlight important aspects regarding the mechanical testing of fracture toughness. The final aim is to increase the awareness to the test sensitivity, ultimately increasing the quality and reliability of reported testing results.

Recent Findings

In a well-intended attempt to facilitate testing procedures or provide alternatives for testing material interfaces, authors are resorting to adaptation of testing methodologies without proper theoretical and experimental validation. The assumption of validity in such cases endangers the perpetration of testing strategies that are not safeguarded by sound theoretical bases. The use of improper statistical treatments based on extreme-value distributions further aggravates this scenario.

Summary

We supply here some directions for authors concerning method selection, interpretation of data scatter, statistical treatment, and possibilities for test validation.

Keywords

Dental restorative materials Mechanical properties Fracture toughness Testing 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. 1.
    Bayne SC. Correlation of clinical performance with ‘in vitro tests’ of restorative dental materials that use polymer-based matrices. Dent Mater. 2012;28(1):52–71.CrossRefPubMedGoogle Scholar
  2. 2.
    Lohbauer U, Belli R, Cune MS, Schepke U. Fractography of clinically fractured, implant-supported dental computer-aided design and computer-aided manufacturing crowns. SAGE Open Med Case Rep. 2017;5:2050313X17741015.  https://doi.org/10.1177/2050313X17741015.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Schepke U, Meijer HJ, Vermeulen KM, Raghoebar GM, Cune MS. Clinical bonding of resin nano ceramic restorations to zirconia abutments: a case series within a randomized clinical trial. Clin Implant Dent Relat Res. 2016;18(5):984–92.CrossRefPubMedGoogle Scholar
  4. 4.
    Lube T, Manner M, Danzer R. The miniaturisation of the 4-point-bend test. Fatigue Fract Eng Mater Struct. 1997;20(11):1605–16.CrossRefGoogle Scholar
  5. 5.
    Baratta FI, Matthews WT, Quinn GD. Errors associated with flexure testing of brittle materials. Report no MTL TR 87 - 35, US Army Materials Technology Laboratory. 1987.Google Scholar
  6. 6.
    Quinn GD, Morell R. Design data for engineering ceramics: a review of the flexure test. J Am Ceram Soc. 1991;74:2037–66.CrossRefGoogle Scholar
  7. 7.
    Quinn GD, Ives LK, Jahanmir S. On the nature of machining cracks in ground ceramics: part I: SRBSN strengths and fractographic analysis. Mach Sci Technol. 2005;9(2):169–210.CrossRefGoogle Scholar
  8. 8.
    Quinn GD, Ives LK, Jahanmir S. On the nature of machining cracks in ground ceramics: part II, comparison to other silicon nitrides and damage maps. Mach Sci Technol. 2005;9(2):211–37.CrossRefGoogle Scholar
  9. 9.
    Quinn GD. Weibull strength scaling for standardized rectangular flexure specimens. J Am Ceram Soc. 2003;86(3):508–10.CrossRefGoogle Scholar
  10. 10.
    • Wendler M, Valladares M, Petschelt A, Belli R, Lohbauer U. Chairside CAD/CAM materials. Part 3: Cyclic fatigue parameters and lifetime predictions. Dent Mater. In Press.  https://doi.org/10.1016/j.dental.2018.03.24. Here, we show how a threshold fatigue parameter derived from the fracture toughness might correlate better to clinical fracture rates than typical parameters based on strength degradation.
  11. 11.
    Cesar PF, Della Bona A, Scherrer SS, Tholey M, van Noort R, Vichi A, et al. ADM guidance-ceramics: fracture toughness testing and method selection. Dent Mater. 2017;33(6):575–84.CrossRefPubMedGoogle Scholar
  12. 12.
    Scherrer SS, Lohbauer U, Della Bona A, Vichi A, Tholey MJ, Kelly JR, et al. ADM guidance-ceramics: guidance to the use of fractography in failure analysis of brittle materials. Dent Mater. 2017;33(6):599–620.CrossRefPubMedGoogle Scholar
  13. 13.
    Badawy R, El-Mowafy O, Tam LE. Fracture toughness of chairside CAD/CAM materials - alternative loading approach for compact tension test. Dent Mater. 2016;32(7):847–52.CrossRefPubMedGoogle Scholar
  14. 14.
    • Munz D. What can we learn from R-curve measurements? J Am Ceram Soc. 2007;90:1–15. Here, Prof. Munz summarizes different R-curve relations, the effect on strength measurements, and factors influencing fracture toughness measurements.CrossRefGoogle Scholar
  15. 15.
    Soderholm KJ. Review of the fracture toughness approach. Dent Mater. 2010;26(2):E63–77.CrossRefPubMedGoogle Scholar
  16. 16.
    • Belli R, Wendler M, Zorzin JI, Lohbauer U. Practical and theoretical considerations on the fracture toughness testing of dental restorative materials. Dent Mater. 2018;34(1):97–119. Here, we go into details of factors affecting fracture toughness tests and possibilities for dental materials.CrossRefPubMedGoogle Scholar
  17. 17.
    Swab JJ, Tice J, Wereszczak AA, Kraft RH. Fracture toughness of advanced structural ceramics: applying ASTM C1421. J Am Ceram Soc. 2015;98(2):607–15.CrossRefGoogle Scholar
  18. 18.
    Lube T, Rasche S, Gde Tirte Nindhia T. A fracture toughness test using the ball-on-three-balls test. J Am Ceram Soc. 2016;99:249–56.CrossRefGoogle Scholar
  19. 19.
    Strobl S, Lube T, Schoppl O. Toughness measurement on ball specimens. Part II: experimental procedure and measurement uncertainties. J Eur Ceram Soc. 2014;34(7):1881–92.CrossRefGoogle Scholar
  20. 20.
    Eldafrawy M, Ebroin MG, Gailly PA, Nguyen JF, Sadoun MJ, Mainjot AK. Bonding to CAD-CAM composites: an interfacial fracture toughness approach. J Dent Res. 2018;97(1):60–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Paes PNG, Bastian FL, Jardim PM. The influence of Y-TZP surface treatment on topography and ceramic/resin cement interfacial fracture toughness. Dent Mater. 2017;33(9):976–89.CrossRefPubMedGoogle Scholar
  22. 22.
    De Munck J, Luehrs AK, Poitevin A, Van Ende A, Van Meerbeek B. Fracture toughness versus micro-tensile bond strength testing of adhesive-dentin interfaces. Dent Mater. 2013;29(6):635–44.CrossRefPubMedGoogle Scholar
  23. 23.
    De Munck J, Poitevin A, Luhrs AK, Pongprueksa P, Van Ende A, Van Landuyt KL, et al. Interfacial fracture toughness of aged adhesive-dentin interfaces. Dent Mater. 2015;31(4):462–72.CrossRefPubMedGoogle Scholar
  24. 24.
    Souza EM, De Munck J, Pongprueksa P, Van Ende A, Van Meerbeek B. Correlative analysis of cement-dentin interfaces using an interfacial fracture toughness and micro-tensile bond strength approach. Dent Mater. 2016;32(12):1575–85.CrossRefPubMedGoogle Scholar
  25. 25.
    Ruse ND. Letter to the Editor, “Dentin bonding testing using a mini-interfacial fracture toughness approach”. J Dent Res. 2016;95(8):953.CrossRefPubMedGoogle Scholar
  26. 26.
    Pongprueksa P, De Munck J, Karunratanakul K, Barreto BC, Van Ende A, Senawongse P, et al. Dentin bonding testing using a mini-interfacial fracture toughness approach. J Dent Res. 2016;95(3):327–33.CrossRefPubMedGoogle Scholar
  27. 27.
    Pongprueksa P, De Munck J, Barreto BC, Karunratanakul K, Van Meerbeek B. Mini-interfacial fracture toughness as a new validated enamel-bonding effectiveness test. J Mech Behav Biomed Mater. 2016;62:446–55.CrossRefPubMedGoogle Scholar
  28. 28.
    Pongprueksa P, De Munck J, Karunratanakul K, Barreto BC, Van Ende A, Senawongse P, et al. Response to Letter to the Editor, “Dentin bonding testing using a mini-interfacial fracture toughness approach”. J Dent Res. 2016;95(8):954.CrossRefPubMedGoogle Scholar
  29. 29.
    Rouxel T, Yoshida S. The fracture toughness of inorganic glasses. J Am Ceram Soc. 2017;100:4374–96.CrossRefGoogle Scholar
  30. 30.
    Quinn GD, Swab JJ. Fracture toughness of glasses as measured by the SCF and SEPB methods. J Eur Ceram Soc. 2017;37:4243–57.CrossRefGoogle Scholar
  31. 31.
    Quinn G. Flexure strength of advanced structural ceramics—a round-robin. J Am Ceram Soc. 1990;73(8):2374–84.CrossRefGoogle Scholar
  32. 32.
    Quinn GD. The fracture toughness round robins in VAMAS: what we have learned. In: Salem JA, Quinn GD, Jenkins MG, editors. Fracture resistance testing of monolithic and composite brittle materials, ASTM STP 1409. West Conshohocken: ASTM International; 2002. p. 107–26.CrossRefGoogle Scholar
  33. 33.
    Belli R, Wendler M, Petschelt A, Cicconi MR, de Ligny D, Werbach K, et al. Fracture anisotropy in texturized LS2 glass-ceramics. J Non-Cryst Solids. 2017;481:457–69.CrossRefGoogle Scholar
  34. 34.
    Lube T, Dusza J. A silicon nitride reference material—a testing program of ESIS TC6. J Eur Ceram Soc. 2007;27(2–3):1203–9.CrossRefGoogle Scholar
  35. 35.
    •• Mai Y, Lawn BR. Crack-interface grain bridging as a fracture resistance mechanism in ceramics: II. Theoretical fracture mechanics model. J Am Ceram Soc. 1987;70:289. Here, Mai and Lawn established the role of friction between a particulate and the material its embedded in in the toughening through bridging elements.CrossRefGoogle Scholar
  36. 36.
    Swanson PL, Fairbanks CJ, Lawn BR, Mai YW, Hockey BJ. Crack-interface grain bridging as a fracture resistance mechanism in ceramics: I, experimental study of alumina. J Am Ceram Soc. 1987;70:279–89.CrossRefGoogle Scholar
  37. 37.
    Funfschilling S, Fett T, Hoffmann MJ, Oberacker R, Ozcoban H, Schneider GA, et al. Estimation of the high-temperature R curve for ceramics from strength measurements including specimens with focused ion beam notches. J Am Ceram Soc. 2010;93(9):2411–4.CrossRefGoogle Scholar
  38. 38.
    Fett T. New contributions to R-curves and bridging stresses—applications of weight functions. Karlsruhe: KIT Scientific Publisching, Karlsruhe; 2012.Google Scholar
  39. 39.
    Alkadi L, Ruse ND. Fracture toughness of two lithium disilicate dental glass ceramics. J Prosthet Dent. 2016;116(4):591–6.CrossRefPubMedGoogle Scholar
  40. 40.
    Danzer R, Supancic P, Pascual J, Lube T. Fracture statistics of ceramics—Weibull statistics and deviations from Weibull statistics. Eng Fract Mech. 2007;74(18):2919–32.CrossRefGoogle Scholar
  41. 41.
    Danzer R. Some notes on the correlation between fracture and defect statistics: are Weibull statistics valid for very small specimens? J Eur Ceram Soc. 2006;26(15):3043–9.CrossRefGoogle Scholar
  42. 42.
    Wallin K. The scatter in Kic-results. Eng Fract Mech. 1984;19(6):1085–93.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Renan Belli
    • 1
  • José Ignácio Zorzin
    • 1
  • Ulrich Lohbauer
    • 1
  1. 1.Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Zahnklinik 1 – Zahnerhaltung und Parodontologie, Forschungslabor für dentale BiomaterialienErlangenGermany

Personalised recommendations